欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (12): 2139-2146.doi: 10.3724/SP.J.1006.2012.02139

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

花生蔗糖合酶基因AhSuSy的克隆和干旱胁迫表达分析

何美敬,刘立峰*,穆国俊,侯名语,陈焕英,崔顺立   

  1. 河北农业大学农学院 / 河北省作物种质资源重点实验室, 河北保定 071001
  • 收稿日期:2012-07-15 修回日期:2012-07-15 出版日期:2012-12-12 网络出版日期:2012-10-08
  • 通讯作者: 刘立峰, E-mail: liulifeng@hebau.edu.cn
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项基金(CARS-14), 河北省应用基础研究计划重点基础研究项目(10960120D)和河北省高等学校科学技术研究重点项目(ZD2010136)资助。

Molecular Cloning of Sucrose Synthase Gene and Expression Analysis under Drought Stress in Peanut (Arachis hypogaea L.)

HE Mei-Jing,LIU Li-Feng*,MU Guo-Jun,HOU Ming-Yu,CHEN Huan-Ying,CUI Shun-Li   

  1. Key Laboratory of Crop Germplasm Resources of Hebei Province / College of Agronomy, Agricultural University of Hebei, Baoding 071001, China
  • Received:2012-07-15 Revised:2012-07-15 Published:2012-12-12 Published online:2012-10-08
  • Contact: 刘立峰, E-mail: liulifeng@hebau.edu.cn

摘要:

蔗糖合酶(sucrose synthase, SuSy)是蔗糖代谢途径中的关键酶, 在植物生长、发育和渗透调节过程中起着重要的作用。本研究利用同源克隆、RACETAIL-PCR相结合的方法从花生叶片中分离了蔗糖合酶基因, 命名为AhSuSy (GenBank登录号JF346233)。该基因cDNA序列全长2 790 bp, 包含一个2 421 bp的开放阅读框(ORF), 5′端非编码区57bp, 3¢端非编码区为312 bp。根据编码区预测AhSuSy编码806个氨基酸, 与大豆、拟南芥、玉米等植物中相关蛋白的氨基酸序列同源性达75%以上; 成功构建了该基因的原核表达载体pET32a-AhSuSy, IPTG诱导下得到92 kD左右的蛋白, 与理论值一致。半定量RT-PCR分析表明AhSuSy在花生根、茎、叶中均有表达。利用10%PEG模拟干旱处理花生幼苗, 分析胁迫后AhSuSy的转录水平, 同时测定蔗糖合酶活性和蔗糖含量, 发现三者均表现为处理后4~12 h逐渐升高, 相关性分析显示花生中蔗糖含量与蔗糖合酶活性的相关系数达0.993(P=0.007<0.01), 处理后12~24 h逐渐降低。推测该基因响应干旱调控, 在花生抗旱胁迫中可能起着一定的作用。

关键词: 花生, 蔗糖合酶基因, 克隆, 半定量RT-PCR, 表达分析

Abstract:

Sucrose synthase (SuSy), a key enzyme in sucrose metabolism, plays an important role in both plant growth and development and osmotic adjustment. Here, a cDNA sequence of sucrose synthase gene, designated AhSuSy (GenBank accession number: JF346233), was isolated from peanut using homologous cloning, RACE and TAIL-PCR. The full-length of AhSuSy cDNA is 2 790 bp, contained an ORF of 2 421 bp, the 5′UTR and 3′UTR of 57 bp and 312 bp, respectively. A peptide of 806 amino acid residues was deduced according to the ORF, which showed more than 75% homologous to the corresponding proteins in soybean, Arabidopsis and maize. The AhSuSy was ligated into pET-32a(+) and transformed into E. coli competent cell. After induced by IPTG, the fusion protein was obtained and its relative molecular weight was 92 kD, which was consistent with the theoretical value. The tissue specific expression analysis by using semi-quantitative RT-PCR assays indicated that AhSuSy was expressed in root, stem and leaf. After treated with 10%PEG, seedlings of peanut were used to determine transcript level for AhSuSy, sucrose synthase activity and sucrose content. The result showed that all of the three parameters were gradually increased during 4h to 12 h after treatment and the correlation coefficient between sucrose synthase activity and sucrose content was 0.993 (P=0.007<0.01) during this period, then declined from 12h to 24 h after treatment, which indicated that AhSuSy may play an important role in adaptation of plants to drought stress.

 

Key words: Peanut, Sucrose synthase gene, Cloning, Semi-quantitative RT-PCR, Expression analysis

[1]Jang J C, Leon P, Zhou L, Sheen J. Hexokinase as a sugar sensor in higher plants. Plant Cell, 1997, 9: 5–19



[2]Loreti E, Bellis L D, Alpi A, Perata P. Why and how do plant cells sense sugars? Ann Bot, 2001, 88: 803–812



[3]Hanson H D, Hitz W D. Metabolic responses of mesophytes to plant water deficits. Annu Rev Plant Physiol, 1982, 33: 163–203



[4]Kramer P J, Boyer J S. Water Relations of Plants and Soils. San Diego: Academic Press, 1995. pp 377–404



[5]Prado F E, Boero C, Gallardo M, González J A. Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa wild seeds. Bot Bull Acad Sin, 2000, 41: 27–34



[6]Calderon P, Pontis H G. Increase of sucrose synthase activity in wheat plants after a chilling shock. Plant Sci, 1985, 42: 173–176



[7]Déjardin A, Sokolov L N, Kleczkowski L A. Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem, 1999, 344: 503–509



[8]Baud S, Vaultier M N, Rochat C. Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot, 2004, 55: 397–409



[9]Fujii S, Hayashi T, Mizuno K. Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant Cell Physiol, 2010, 51: 294–301



[10]Coleman H D, Yan J, Mansfield S D. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA, 2009, 4: 13118–13123



[11]Brill E, Thournout M, White R G, Llewellyn D, Campbell P M, Engelen S, Ruan Y L, Arioli T, Furbank R T. A novel isoform of sucrose synthase is targeted to the cell wall during secondary cell wall synthesis in cotton fiber. Plant Physiol, 2011, 157: 40–54



[12]Fernández E B, Muñoz F J, Li J, Bahaji A, Almagro G, Montero M, Etxeberria E, Hidalgo M, Sesma M T, Romero J P. Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. Proc Natl Acad Sci USA, 2012, 109: 321–326



[13]Geiser M, Döring H P, Wöstemeyer J, Behrens U, Tillmann E , Starlinger P. A cDNA clone from Zea mays endosperm sucrose synthetase mRNA. Nucl Acids Res, 1980, 8: 6175–6188



[14]Buchner P, Poret M, Rochat C. Cloning and characterization of a cDNA encoding a second sucrose synthase gene in pea (Pisum sativum L.). Plant Physiol, 1998, 117: 719



[15]Wienkoop S, Larrainzar E, Glinski M, Gonza′lez E M, Igor C A, Weckwerth W. Absolute quantification of Medicago truncatula sucrose synthase isoforms and N-metabolism enzymes in symbiotic root nodules and the detection of novel nodule phosphoproteins by mass spectrometry. J Exp Bot, 2008, 59: 3307–3315



[16]Chopra S, Del-favero J, Dolferus R , Jacobs M. Sucrose synthase of Arabidopsis: genomic cloning and sequence characterization. Plant Mol Biol, 1992, 18: 131–134



[17]Sturm A, Tang G Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci, 1999, 4: 401–407



[18]Komatsu A, Moriguchi T, Koyama K, Omura M, Akihama T. Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. J Exp Bot, 2002, 53: 61–71



[19]Crespi M D, Zabaleta E J, Pontis H G, Salerno G L. Sucrose synthase expression during cold acclimation in wheat. Plant Physiol, 1991, 96: 887–891



[20]Rosa M, Hilal M, Gonzálezb J A, Prado F E. Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant Physiol Biochem, 2009, 47: 300–307



[21]Kleines M, Elster R C, Rodrigo M J, Blervacq A S, Salamini F, Bartels D. Isolation and expression analysis of two stress-responsive sucrose-synthase genes from the resurrection plant Craterostigma plantagineum (Hochst.). Planta, 1999, 209: 13–24



[22]Sicilia C B, Amado S H, Melendi G P, Carbonero P. Structure, expression profile and subcellular localisation of four different sucrose synthase genes from barley. Planta, 2011, 234: 391–403



[23]Siegien I N, Leszczynska R B, Cômea D, Corbineau F. Effects of drying rate on dehydration sensitivity of excised wheat seedling shoots as related to sucrose metabolism and antioxidant enzyme activities. Plant Sci, 2004, 167: 879–888



[24]Lu S W, Li T L, Jiang J. Effects of salinity on sucrose metabolism during tomato fruit development. J Afr Biotechnol, 2010, 9: 842–849



[25]Arrese-Igor C, Gonzalez E M, Gordon A J, Minchin F R, Galvez L, Royuela M, Cabrerizo P M, Aparicio-Tejo P M. Sucrose synthase and nodule nitrogen fixation under drought and other environmental stresses. Plant Physiol, 1999, 27: 189–212



[26]Silvente S, Camas A, Lara M. Heterogeneity of sucrose synthase genes in bean (Phaseolus vulgaris L.): evidence for a nodule-enhanced sucrose synthase gene. J Exp Bot, 2003, 54: 749–755



[27]Salanoubat M, Belliard G. The steady-state level of potato sucrose synthase mRNA is dependent on wounding, anaerobiosis and sucrose concentration. Gene, 1989, 84: 181–185



[28]Zeng Y, Wu Y, Avigne W T, Koch K E. Differential regulation of sugar-sensitive sucrose synthases by hypoxia and anoxia indicate complementary transcriptional and posttranscriptional responses. Plant Physiol, 1998, 116: 1573–1583



[29]Loreti E, Poggi A, Novi G, Alpi A, Petrata P. A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. Plant Physiol, 2005, 137: 1130–1138



[30]Zhang J-M(张吉民), Miao H-R(苗华荣), Li Z-C(李正超), Hao S-M(郝素美), Yan Q(闫强), Zhu E-J(祝恩吉). Status and prospects for the processing, utilization and trade of peanut. J Wuhan Polytech Univ (武汉工业学院学报), 2002, (2): 104–106 (in Chinese with English abstract)



[31]Nageswara R C. Stability of the relationship between specific leaf area and carbon isotope is crimination across environments in peanut. Crop Sci, 1994, 34: 98–103



[32]Lauriano J A, Lidon, F C, Carvalho C A, Campos P S, Matos M C. Drought effects on membrane lipids and photosynthetic activity in different peanut cultivars. Photosynthetica, 2000, 38: 7–12



[33]Rucker K S, Kvien C K, Holbrook C C, Hook J E. Identification of peanut genotypes with improved drought avoidance traits. Peanut Sci, 1995, 22: 14–18



[34]Suther D M, Patel M S. Yield and nutrient absorption by groundnut and iron availability in soil as influenced by lime and soil water. J Ind Soc Soil Sci, 1992, 40: 594–596



[35]Cole R J, Sanders T H, Dorner J W, Blankenship P D. Environmental conditions required to induce preharvest aflatoxin contamination of groundnuts: summary of six years’ research. In Aflatoxin contamination of groundnuts. Patancheru, 1989: 279–287



[36]Jonathan H W, Boote K J. Physiology and modeling-Predicting the “unpredictable legume”. Peanut Sci, 1995, 9: 301–353



[37]Jiang H-F(姜慧芳). Peanut Breeding (花生育种学). Beijing: China Agriculture Press, 1997 (in Chinese)



[38]Hirose T, Scofield G N, Terao T. An expression analysis profile for the entire sucrose synthase gene family in rice. Plant Sci, 2008, 174: 534–543



[39]Zhang D Q, Xu B H, Yang X H, Zhang Z Y, Li B L. The sucrose synthase gene family in Populus: structure, expression, and evolution. Tree Genet Genom, 2011, 7: 443–456



[40]Sambrook J, Russell D W. Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 2001. pp 822–826



[41]Brand Y, Hovav R. Identification of suitable internal control genes for quantitative real-time PCR expression analyses in Peanut (Arachis hypogaea L). Peanut Sci, 2009, 37: 1–9



[42]Yu X-J(於新建). Detection of sucrose synthase and Sucrose phosphate synthase enzyme activity uses a spectrophotometry strategy. In: Plant Physiology Laboratory Manual (植物生理实验手册). Shanghai: Shanghai scientific & Technical Publishers, 1985. pp 148–149 (in Chinese)



[43]Roover J D, Vandenbranden K, Laere A V, Ende W V. Drought induces fructan synthesis and 1-SST (sucrose: sucrose fructosyltransferase) in roots and leaves of chicory seedlings (Cichorium intybus L.). Planta, 2000, 210: 808–814



[44]Gill P K, Sharma A D, Singh P, Bhullar S S. Effect of various abiotic stresses on the growth soluble sugars and water relations of sorghum seedlings grown in light and darkness. J Plant Physiol, 2001, 27: 72–84



[45]Gibson SI. Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol, 2005, 8: 93–102



[46]He H-Y(贺鸿雁), Sun C-H(孙存华), Du W(杜伟), Li Y(李扬). Effects of PEG 6000 osmotic stress on osmolytes of peanut seedling. J Chin Oil Crop Sci (中国油料作物学报), 2006, 28(1): 76–78 (in Chinese with English abstract)



[47]Jha A B, Dubey R S. Carbohydrate metabolism in growing rice seedlings under arsenic toxicity. Plant Physiol, 2004, 161: 101–108



[48]Pelah D, Wang W X, Altman A, Shoseyov O, Bartels D. Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiologia Plantarum, 1997, 99: 153–159



[49]Chenk P W, Snaar-Jagalska B E. Signal perception and transduction: the role of protein kinases. Biochim Biophys Acta, 1999, 1449: 1–24



[50]Stone J M, Walker J C. Plant protein kinase families and signal transduction. Plant Physiol, 1995, 108: 451–457



[51]Bieniawska Z, Barratt D H P, Garlick A P, Thole V, Kruger N J, Martin C, Zrenner R, Smith A M. Analysis of the sucrose synthase gene family in Arabidopsis. Plant J, 2007, 49: 810–828



[52]Núñez J G A, Tiessen A. Arabidopsis sucrose synthase 2 and 3 modulate metabolic homeostasis and direct carbon towards starch synthesis in developing seeds. Planta, 2010, 232: 701–718
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[5] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[6] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[7] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[8] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[9] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[10] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[11] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[12] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[13] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[14] 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264.
[15] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!