欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (01): 84-92.doi: 10.3724/SP.J.1006.2013.00084

• 耕作栽培·生理生化 • 上一篇    下一篇

施氮量和灌溉方式的交互作用对水稻产量和品质影响

张自常1,2,李鸿伟1,曹转勤1,王志琴1,杨建昌1,*   

  1. 1 扬州大学江苏省作物遗传生理重点实验室, 江苏扬州 225009; 2 江苏省农业科学院植物保护研究所, 江苏南京 210014
  • 收稿日期:2012-05-22 修回日期:2012-09-05 出版日期:2013-01-12 网络出版日期:2012-11-14
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118603), 国家自然科学基金重大国际合作交流项目(31061140457), 国家自然科学基金项目(31071360), 江苏省基础研究计划项目(BK2009005), 中央级科研院所基本科研业务费专项基金项目(农业) (201103003; 201203079), 国家“十二五”科技支撑计划项目(2011BAD16B14)和江苏高校优势学科建设工程专项经费资助。

Effect of Interaction between Nitrogen Rates and Irrigation Regimes on Grain Yield and Quality of Rice

ZHANG Zi-Chang1,2,LI Hong-Wei1,CAO Zhuan-Qin1,WANG Zhi-Qin1,YANG Jian-Chang1,*   

  1. 1 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; 2 Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2012-05-22 Revised:2012-09-05 Published:2013-01-12 Published online:2012-11-14

摘要:

本研究旨在探讨氮肥和灌溉方式对水稻产量和品质的的影响及其互作效应, 这对指导水稻高产、优质和高效栽培有重要意义。将两优培九(籼稻)和扬粳4038 (粳稻)种植于土培池, 设置常规灌溉(CI)、轻干湿交替灌溉(WMD)和重干湿交替灌溉(WSD) 3种灌溉方式及0(0N, 0 kg hm-2)、中氮(MN, 240 kg hm-2)和高氮(HN, 360 kg hm-2) 3种氮素水平, 观察其对产量和稻米品质的影响。结果表明, 在中氮和高氮水平下, 产量、稻米的整精米率、外观品质和崩解值, 以轻干湿交替灌溉显著高于或优于常规灌溉。在中氮水平下, 重干湿交替灌溉的产量和稻米品质显著低于或劣于常规灌溉; 在高氮水平下, 重干湿交替灌溉的产量高于常规灌溉, 稻米品质在这两种灌溉方式间差异不显著。轻干湿交替灌溉显著提高了灌浆期剑叶光合速率、籽粒中ATP酶活性及根系中吲哚-3-乙酸、玉米素+玉米素核苷和脱落酸含量。说明灌溉方式和氮肥对产量和稻米品质具明显互作效应。在轻干湿交替灌溉和中氮水平下根系、叶片和籽粒生理活性增强是水稻产量提高和稻米品质改善的重要生理原因。

关键词: 水稻, 轻干湿交替灌溉, 重干湿交替灌溉, 氮肥, 产量, 品质

Abstract:

This study investigated how nitrogen rates and irrigation regimes and their interactions affect grain yield and quality of rice, which would have great significance in conducting the cultivation for high yielding, good quality and high efficiency. Two rice cultivars, Liangyoupeijiu (indica) and Yangjing 4038 (japonica), were grown in the tanks filled with soil. Three irrigation regimes, conventional irrigation (CI), alternate irrigation with wetting and moderate drying (WMD) and alternate irrigation with wetting and severe drying (WSD), and three nitrogen (N) rates, 0N (0 kg ha-1), medium amount of N (MN, 240 kg ha-1), and high amount of N (HN, 360 kg ha-1), were used during the whole growing season. The results showed that, at either MN or HN rate, grain yield, head rice, appearant quality, and breakdown were significantly higher or better under the WMD regime than under the CI regime. At the MN rate, the WSD regime significantly decreased grain yield and quality as compared with the CI regime. At the HN rate, however, the grain yield was higher under the WSD regime than under the CI regime and grain quality showed no significant difference between the two irrigation regimes. The WMD regime significantly increased photosynthetic rate of the flag leaf, activity of adenosine triphosphate enzyme (ATPase) in grains and contents of indole-3-acetic acid, zeatin + zeatin riboside, and abscisic acid in roots during grain filling. All the data indicate that interactions between nitrogen rates and irrigation regimes mediate the grain yield and quality of rice. Stronger root activity, greater leaf photosynthetic rate and larger sink strength contribute to higher grain yield and better grain quality of rice under the MN rate and WMD regime.

Key words: Rice, Alternate irrigation with wetting and moderate drying, Alternate irrigation with wetting and severe drying, Nitrogen fertilizer, Grain yield, Grain quality

[1]Ding D-W(邓定武), Tan Z-Z(谭正之), Long X-H(龙兴汉). Effect of irrigation on yield and quality of hybrid rice. Crops (作物杂志), 1990, 4(2): 7–9 (in Chinese with English abstract)



[2]Peng S-Z(彭世彰), Hao S-R(郝树荣), Liu Q(刘庆), Liu Y(刘勇), Xu N-H(徐宁红). Study on the mechanisms of yield raising and quality improving for paddy rice under water saving irrigation. J Irrig Drainage (灌溉排水学报), 2000, 19(3): 3–7 (in Chinese with English abstract)



[3]Cai Y-X(蔡一霞), Zhu Q-S(朱庆森), Wang Z-Q(王志琴), Yang J-C(杨建昌), Zheng L(郑雷), Qian W-C(钱卫成). Effect of soil moisture on rice quality during grain-filling period. Acta Agron Sin (作物学报), 2002, 28(5): 601–608 (in Chinese with English abstract)



[4]Zheng G-P(郑桂萍), Chen S-Q(陈书强), Guo X-H(郭晓红), Wang B-L(王伯伦). Effect of soil water on compositions and eating quality of rice. J Shenyang Agric Univ (沈阳农业大学学报), 2004,35(4): 332–335 (in Chinese with English abstract)



[5]Jin Z-X(金正勋), Qiu T-Q(秋太权), Sun Y-L(孙艳丽), Zhao J-M(赵久明), Jin X-Y(金学泳). Effects of nitrogen fertilizer on chalkness ratio and cooking and eating quality properties of rice grain. Plant Nutr Fert Sci (植物营养与肥料学报), 2001, 7(1): 31–35 (in Chinese with English abstract)



[6]Zhang H-C(张洪程), Wang X-Q(王秀芹), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(徐轲). Effect of N-application rate on yield, quality and characters of nitrogen uptake of hybrid rice variety Liangyoupeijiu. Sci Agric Sin (中国农业科学), 2003, 36(7): 800–806 (in Chinese with English abstract)



[7]Jin J(金军), Xu D-Y(徐大勇), Cai Y-X(蔡一霞), Hu S-Y(胡署云), Ge M(葛敏), Zhu Q-S(朱庆森). Effect of N-fertilizer on main quality characters of rice and RVA profile parameters. Acta Agron Sin (作物学报), 2004, 30(2): 154–158 (in Chinese with English abstract)



[8]He Z-P(何钟佩). Experimental Guide for Crop Chemical Regulation (农作物化学控制实验指导). Beijing: Beijing Agricultural University Press, 1991. pp 60–65 (in Chinese)



[9]Bollmark M, Kubat B, Eliasson L. Variations in endogenous cytokinin content during adventitious root formation in pea cuttings. Plant Physiol, 1988, 132: 262-265



[10]Yang J-C(杨建昌), Wang Z-Q(王志琴), Lang Y-Z(郎有忠), Zhu Q-S(朱庆森). ATPase activity in the developing grains and its regulation in intersubspecific hybrid rice. J Yangzhou Univ (扬州大学学报), 1998, 1(1): 13–17 (in Chinese with English abstract)



[11]Supervising Department of Quality and Technology of China (国家质量技术监督局). National Standard of the People’s Republic of China (中华人民共和国国家标准). Good Quality of Rice Grain (优质稻谷). GB/T17891-1999, 1999 (in Chinese)



[12]Ministry of Agriculture, The People’s Republic of China (中华人民共和国农业部). Good Quality and Edible Rice Grains (优质食用稻米). NY147-88, 1988 (in Chinese)



[13]Shi Y(石英), Shen Q-R(沈其荣), Mao Z-S(茆泽圣), Li W(李伟). Biological response of rice crop cultivated on upland soil condition and the effect of mulching on it. Plant Nutr Fert Sci (植物营养与肥料学报), 2001, 7(3): 271–277 (in Chinese with English abstract)



[14]Cheng J-P(程建平), Cao C-G(曹凑贵), Cai M-L(蔡明历), Yuan B-Z(原保忠), Wang J-Z(王建漳), Zheng C-Y(郑传举). Effects of different irrigation modes on the yield and water productivity of rice. Trans CSAE (农业工程学报), 2006, 22(12): 28–33 (in Chinese with English abstract)



[15]Wu W-G(吴文革), Zhang S-H(张四海), Zhao J-J(赵决建), Wu G-C(吴桂成), Li Z-F(李泽福), Xia J-F(夏加发). Nitrogen uptake, utilization and rice yield in the north rimland of double-cropping rice region as affected by different nitrogen management strategies. Plant Nutr Fert Sci (植物营养与肥料学报), 2007, 13(5): 757–764 (in Chinese with English abstract)



[16]Li F-M(李方敏), Fan X-L(樊小林), Chen W-D(陈文东). Effects of control release fertilizer on rice yield and nitrogen use efficiency. Plant Nutr Fert Sci (植物营养与肥料学报), 2005, 11(4): 494–500 (in Chinese with English abstract)



[17]Kumar R, Sarawgi A K, Ramos C, Amarante S T, Ismail A M, Wade L J. Partitioning of dry matter during drought stress in rainfed lowland rice. Field Crops Res, 2006, 96: 455–465



[18]Jiang L G, Dong D F, Gan X Q,  Wei S Q. Photosynthetic efficiency and nitrogen distribution under different nitrogen management and relationship with physiological N-use efficiency in three rice genotypes. Plant Soil, 2005, 271: 321–328



[19]Freney J R. Strategies to reduce gaseous emissions of nitrogen from irrigated agriculture. Nutr Cycl Agroecosyst, 1997, 48: 155–160



[20]Peng S B, Buresh R J, Huang J L Yang J C, Zou Y B, Zhong X H, Wang G H, Zhang F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res, 2006, 96: 37–47



[21]Lahiri A N. Interaction of water stress and mineral nutrition on growth and yield. In: Turner N C ed. Adaption of Plant to Water and High Temperature Stress. New York: Wiley-Inter Science Publishers, 1980. pp 38–136



[22]Arnon I. Physiological principles of dry land crop production, In: Gupta ed. Physiological Aspects of Dryland Farming. New Delhi: Oxford and IBH Publishers, 1975. pp 1–124



[23]Begg J E, Turner N C. Crop and water deficits. Adv Agron, 1976, 28: 161–218



[24]Bhan S, Misra D K. Effects of variety spacing and soil fertility on root development in groundnut under arid conditions. Indian J Agric Sci, 1970, 40: 1050–1055



[25]You X-T(尤小涛), Jing Q(荆奇), Jiang D(姜东), Dai T-B(戴廷波), Zhou D-Q(周冬琴), Cao W-X(曹卫星). Effects of nitrogen application on nitrogen utilization and grain yield and quality in rice under water saving irrigation. Chin J Rice Sci (中国水稻科学), 2006, 20(2): 199–204 (in Chinese with English abstract)



[26]Cai Y-X(蔡一霞), Wang W(王维), Zhu Z-W(朱智伟), Zhang Z-J(张祖建), Lang Y-Z(郎有忠), Zhu Q-S(朱庆森). Effects of water stress during grain-filling period on rice grain yield and its quality under different nitrogen levels. Chin J Appl Ecol (应用生态学报), 2006, 17(7): 1201–1206 (in Chinese with English abstract)



[27]Sze H. Translocation ATPase: advances using membrane vesicles. Ann Rev Plant Physiol, 1985, 35: 175–208



[28]Lur H, Setter T L. Role of auxin in maize endosperm development (timing of nuclear DNA endoreduplication, zein expression, and cytokinin). Plant Physiol, 1993, 103: 273–280



[29]Yang J-C(杨建昌), Peng S-B(彭少兵), Gu S-L(顾世梁), Visperas R M, Zhu Q-S(朱庆森). Changes in Zeatin and Zeatin Riboside content in rice grains and roots during grain filling and the relationship to grain Plumpness. Acta Agron Sin (作物学报), 2001, 27(1): 35–42 (in Chinese with English abstract)



[30]Yang J-C(杨建昌), Qin M(仇明), Wang Z-Q(王志琴), Liu L-J(刘立军), Zhu Q-S(朱庆森). Relationship between the cell proliferation and cytokinin contents in rice endosperm during its development. Acta Agron Sin (作物学报), 2004, 30(1): 11–17 (in Chinese with English abstract)



[31]Yang J-C(杨建昌), Liu K(刘凯), Zhang S-F(张慎凤), Wang X-M(王学明), Wang Z-Q(王志琴), Liu L-J(刘立军). Hormones in rice spikelets in responses to water stress during meiosis. Acta Agron Sin (作物学报), 2008, 34(1): 111–118 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[6] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[7] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[10] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[11] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[12] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[13] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[14] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[15] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!