作物学报 ›› 2013, Vol. 39 ›› Issue (01): 93-100.doi: 10.3724/SP.J.1006.2013.00093
张子山1,李耕2,高辉远1,*,刘鹏2,杨程1,孟祥龙1
ZHANG Zi-Shan1,LI Geng2,GAO Hui-Yuan1,*,LIU Peng2,YANG Cheng1,MENG Xiang-Long2
摘要:
为了探讨不同衰老型玉米叶片在衰老过程中光化学反应及其对光合能力维持的贡献, 本研究使用持绿玉米品种“齐319”和早衰玉米品种“黄早四”, 在控制的条件下, 用乙烯利诱导离体叶片衰老, 通过快速叶绿素荧光诱导动力学曲线(OJIP曲线)和820 nm光吸收等技术, 研究了衰老过程中叶片叶绿素含量、光合速率、光系统I (PSI)、光系统II (PSII)以及光合电子传递体活性的变化。结果表明, 在衰老过程中, 齐319叶片叶绿素含量和光合速率的下降速度明显慢于黄早四, 是功能型持绿品种。玉米叶片的衰老伴随着OJIP曲线的J、I、K、L点荧光的增加, 以及远红光诱导820 nm光信号落差的下降。与齐319相比, 黄早四叶片的OJIP曲线和820 nm光吸收曲线的变化更剧烈。我们认为, 在衰老过程中PSI和PSII光化学活性的快速下降和光合电子传递功能的衰退是玉米叶片光合能力迅速下降的重要原因之一。在此基础上, 讨论了衰老过程中玉米叶片中与光合作用有关蛋白与光合能力下降的可能关系。
[1]Tollenaar M, Daynard T B. Leaf senescence in short-season maize hybrids. Can J Sci, 1978, 58: 869–874[2]Wolfe D W, Henderson D W, Hsiao T C, Alvino A. Interactive water and nitrogen effects on senescence of maize: I. Leaf area duration, nitrogen distribution, and yield. Agron J, 1988, 80: 859–864[3]Thomas H, Howarth C J. Five ways to stay green. J Exp Bot, 2000, 51: 329–337[4]Ma B L, Dwyer L M. Nitrogen up take and use of two contrasting maize hybrids differing in leaf senescence. Plant Soil, 1998, 199: 283–291[5]Gan S, Amasino R M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 1995, 270: 1986–1988[6]Borrell A K, Hammer G L, Henzell R G. Does maintaining green leaf area in Sorghum improve yield under drought? II. Dry matter production and yield. Crop Sci, 2000, 40: 1037–1048[7]El-Lithy M E, Rodrigues G C, van Rensen J J S, Snel J F H, Dassen H J H A, Koornneef M, Jansen M A K, Aarts M G M, Vreugdenhil D. Altered photosynthetic performance of a natural Arabidopsis accession is associated with atrazine resistance. J Exp Bot, 2005, 56: 1625–1634[8]Lin Z H, Chen L S, Chen R B, Zhang F Z, Jiang H X, Tang N. CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply. BMC Plant Biol, 2009, 9: 43[9]Yamori W, Noguchi K O, Hikosaka K, Terashima I. Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerances. Plant Physiol, 2010, 152: 388–399[10]Jiang H X, Tang N, Zheng J G, Chen L S. Antagonistic actions of boron against inhibitory effects of aluminum toxicity on growth, CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, and photosynthetic electron transport probed by the JIP-test, of Citrus grandis seedlings. BMC Plant Biol, 2009, 9: 102[11]Porra R J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophyll a and b. Photosynth Res, 2002, 73: 149–156[12]Li P M, Cheng L L, Gao H Y, Jiang C D, Peng T. Heterogeneous behavior of PSII in soybean (Glycine max) leaves with identical PSII photochemistry efficiency under different high temperature treatments. J Plant Physiol, 2009, 166: 1607–1615[13]Schansker G, Srivastava A, Govindjee. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct Plant Biol, 2003, 30: 785–796[14]Ren L-L (任丽丽), Gao H-Y (高辉远). Effects of chilling stress under weak Light on functions of photosystems in leaves of wild soybean and cultivatar soybean. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2007, 33(4): 333–340 (in Chinese with English abstract)[15]Zhang L T, Gao H Y, Zhang Z S, Xue Z C, Meng Q W. Multiple effects of inhibition of mitochondrial alternative oxidase pathway on photosynthetic apparatus in Rumex K-1 leaves. Biol Plant, 2012, 56: 365–368[16]Strasser B J, Strasser R J. Measuring fast fluorescence transients to address environmental questions: the JIP-test. Photosynthesis: from Light to Biosphere, 1995, 5: 977–980[17]Keskitalo J, Bergquist G, Gardeström P, Jansson S. A Cellular Timetable of Autumn Senescence. Plant Physiol, 2005, 139: 1635–1648[18]Merewitz E B, Gianfagna T, Huang B R. Photosynthesis, water use, and root viability under water stress as affected by expression of SAG12-ipt controlling cytokinin synthesis in Agrostis stolonifera. J Exp Bot, 2011, 62: 383–395[19]Yusuf M A, Kumar D, Rajwanshi R, Strasser R J, Tsimilli-Michael M, Govindjee, Sarin N B. Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta, 2010, 1797: 1428–1438[20]Mathur S, Allakhverdiev S I, Jajoo A. Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of Photosystem II in wheat leaves (Triticum aestivum). Biochim Biophys Acta, 2010, 1807: 22–29[21]Sun S(孙山), Wang S-M(王少敏), Wang J-X(王家喜), Gao H-Y(高辉远). Effects of dehydration in the dark in functions of PSI and PSII in apricot (Prunus armeniaca L. “Jin Tiyang”) leaves. Acta Hort Sin (园艺学报), 2008, 35(1): 1–6 (in Chinese with English abstract) [22]Strasser B J. Donor side capacity of Photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res, 1997, 52: 147–55[23]Ronde J A D, Cress W A, Krügerd G H J, Strasse R J, Stadenb J V. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol, 2004, 161: 1211–1224[24]Tóth S Z, Schansker G, Kissimon J, Kovács L, Garab G, Strasser R J. Biophysical studies of photosystem II-related recovery processes after a heat pulse in barley seedlings (Hordeum vulgare L.). J Plant Physiol, 2005, 162: 181–94[25]Ivanov A G, Morgan R M, Gray G R, Velitchkova M Y, Huner N P A. Temperature/light dependent development of selective resistance to photoinhibition of photosystem I. FEBS Lett, 1998, 430: 288–292[26]Ivanov A G, Hendrickson L, Krol M, Selstam E, Öquist G, Hurry V, Huner N P A. Digalactosyl-diacylglycerol deficiency impairs the capacity for photosynthetic intersystem electron transport and state transitions in Arabidopsis thaliana due to photosystem I acceptor-side limitations. Plant Cell Physiol, 2006, 47: 1146–1157[27]Munekage Y, Hashimoto M, Miyake C, Tomizawa K I, Endo T, Tasaka M, Shikanai T. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature, 2004, 429: 579–582[28]Zhang Z S, Jia Y J, Gao H Y, Zhang L T, Li H D, Meng Q W, Characterization of PSI recovery after chilling-induced photoinhibition in cucumber (Cucumis sativus L.) leaves. Planta, 2011, 234: 883–889[29]Martínez D E, Costa M L, Guiamet J J. Senescence-associated degradation of chloroplast proteins inside and outside the organelle. Plant Biol, 2008, 10 (Suppl. 1): 15–22[30]Wingler A, Purdy S, MacLean J A, Pourtau N. The role of sugars in integrating environmental signals during the regulation of leaf senescence. J Exp Bot, 2007, 57: 391–399[31]Jiang H X, Tang N, Zheng J G, Chen L S. Antagonistic actions of boron against inhibitory effects of aluminum toxicity on growth, CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, and photosynthetic electron transport probed by the JIP-test, of Citrus grandis seedlings. BMC Plant Biol, 2009, 9: 102[32]Lin Z H, Chen L S, Chen R B, Zhang F Z, Jiang H X, Tang N. CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply. BMC Plant Biol, 2009, 9: 43[33]Yamori W, Noguchi K O, Hikosaka K, Terashima I. Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerances. Plant Physiol, 2010, 152: 388–399[34]Wingler A, Purdy S, MacLean J A, Pourtau N. The role of sugars in integrating environmental signals during the regulation of leaf senescence. J Exp Bot, 2006, 57: 391–399[35]Zhu J-F(朱建芬), Zhang Y-J(张永江), Sun C-F(孙传范), Liu L-T(刘连涛), Sun H-C(孙红春), Li C-D(李存东). Physiological effects of nitrogen and potassium nutrition on the senescence of cotton functional leaves. Cotton Sci (棉花学报), 2010, 22(4): 354–359 (in Chinese with English abstract)[36]Gao H-T(高海涛), Wang Y-H(王育红), Meng Z-Y(孟战赢), Wu S-H(吴少辉), Zhang Y(张园). Study on grain yield and physiological characteristics of flag leaves in super high yield winter wheat. J Triticeae Crops (麦类作物学报), 2010, 30(6): 1080–1084 (in Chinese with English abstract)[37]Wu Y-S(武永胜), Xue H(薛晖), Liu Y(刘洋), Gong Y-H(龚月桦). The study of senescence and fluorescence characteristic in leaves of stay-green wheat. Agricultural Research in the Arid Areas (干旱地区农业研究), 2010, 28(4): 117–127 (in Chinese)[38]Jiang D-Y(姜东燕), Yu Z-W(于振文). Effects of different irrigation quantity on chlorophyll fluorescence of winter wheat flag leaves. J Anhui Agric Sci (安徽农业科学), 2010, 38(32): 18003–18004 (in Chinese with English abstract)[39]Han B(韩彪), Chen G-X(陈国祥), Gao Z-P(高志萍), Wei X-D(魏晓东), Xie K-B(解凯彬), Yang X-S(杨贤松). The changes of PSII chlorophyll fluorescence dynamic characteristic during leaf senescence of Ginkgo. Acta Hort Sin (园艺学报), 2010, 37(2): 173–178[40]Jia Y J, Cheng D D, Wang W B, Gao H Y, Liu A X, Li X M, Meng Q W. Different enhancement of senescence induced by metabolic products of Alternaria alternata in tobacco leaves of different ages. Physiol Plant, 2010, 138: 164–175[41]Chen H X, Li W J, An S Z, Gao H Y. Characterization of PSII photochemistry and thermostability in salt-treated Rumex leaves. J Plant Physiol, 2004, 161: 257–264[42]Jia Y J, Cheng D D, Wang W B, Gao H Y, Liu A X, Li X M, Meng Q W. Different enhancement of senescence induced by metabolic products of Alternaria alternata in tobacco leaves of different ages. Physiol Plant, 2010, 138: 164–175[43]Zhang L T, Zhang Z S, Gao H Y, Xue Z C, Yang C, Meng X L, Meng X L. Mitochondrial alternative oxidase pathway protects plants against photoinhibition by alleviating inhibition of the repair of photodamaged PSII through preventing formation of reactive oxygen species in Rumex K-1 leaves. Physiol Plant, 2011, 143: 396–407[44]Nadia A A, Dewez D, Didur O, Popovic R. Inhibition of photosystem II photochemistry by Cr is caused by the alteration of both D1 protein and oxygen evolving complex. Photosynth Res, 2006, 89: 81–87[45]Murata N, Takahashi S, Nishiyama Y, Allakhverdiev S I. Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta, 2007, 1767: 414–421[46]Takahashi S, Murata N. How do environmental stresses accelerate photoinhibition? Trends Plant Sci, 2008, 13: 178–182[47]Makrides S C. Protein synthesis and degradation during aging and senescence. Biol Rev, 1983, 58: 343–422 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[7] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[8] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[9] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[10] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[11] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[12] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[13] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[14] | 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192. |
[15] | 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214. |
|