欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (08): 1339-1344.doi: 10.3724/SP.J.1006.2013.01339

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜不同抗倒性材料中木质素代谢途径关键基因表达特点

黄杰恒**,李威**,曲存民,刘列钊,徐新福,王瑞,李加纳*   

  1. 西南大学农学与生物科技学院 / 南方山地农业教育部工程研究中心, 重庆400716
  • 收稿日期:2013-01-10 修回日期:2013-04-22 出版日期:2013-08-12 网络出版日期:2013-05-21
  • 通讯作者: 李加纳, E-mail: ljn1950@swu.edu.cn, Tel: 023-68250642
  • 基金资助:

    本研究由国家自然科学基金项目(31171619)和教育部和国家外专局“作物种质资源利用创新引智基地”(B12006)资助。

Expression Characteristics of Key Genes in Lignin Pathway among Different Lodging Resistance Lines of Brassica napus L.

HUANG Jie-Heng**,LI Wei**,QU Cun-Min,LIU Lie-Zhao,XU Xin-Fu,WANG Rui,LI Jia-Na*   

  1. Engineering Research Center of South Upland Agriculture / College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
  • Received:2013-01-10 Revised:2013-04-22 Published:2013-08-12 Published online:2013-05-21
  • Contact: 李加纳, E-mail: ljn1950@swu.edu.cn, Tel: 023-68250642

摘要:

植物体内木质素的含量不仅与植物的抗病性有关,也与植物的抗倒伏性状密切联系。本试验以15个抗倒性等级不同的甘蓝型油菜品种为材料,分别在初花期和青荚期测定茎秆中部木质素含量,同时用qRT-PCR的方法分析了木质素代谢途径中6个关键基因PAL4CLC4HCCR1CCR2CAD的表达量差异。结果表明,油菜茎秆木质素从初花期到青荚期平均增加了28%,抗倒性强的材料木质素增加最明显,达到33.5%;不同时期,不同抗倒伏性的油菜茎秆中部木质素含量差异均极显著;各基因表达量在两个时期间差异均显著或极显著,但在不同抗倒性材料间,只有基因PAL4CLCCR1表达量间差异显著;基因PAL的表达量与木质素含量相关性最强,4CL基因的表达量与其他关键酶基因表达量相关性最强。综上所述,木质素的合成积累由代谢途径中各个环节关键基因所共同决定,但基因PAL4CL对木质素的代谢影响更明显。

关键词: 木质素, 荧光定量PCR, 代谢途径, 抗倒性

Abstract:

Lignin is related to not only plant disease resistance but also lodging resistance. The lignin content and six key genes (PAL, 4CL, C4H, CCR1, CCR2, and CAD) expression characteristics of the middle stem were analysed at early flowering stage and podding stage of 15 Brassica napus L. varieties with different lodging resistance level. The results indicated that the lignin content generally increased by 28% from early flowering stage to podding stage, especially by 33.5% in the varieties with stronger lodging resistance. Lignin content was significantly different between the varieties with different lodging resistance levels. The expression of key enzyme genes was remarkably different between two stages, and the expression of genes PAL, 4CL, and CCR1 was remarkably different between the varieties with different lodging resistance levels. The expression of gene PAL was significantly correlated with lignin content at both stages, and the expression of gene 4CL was significantly correlated with that of most other genes. Our results suggested that all the genes studied in the paper could control the lignin synthesis, and PAL and 4CL were the most important genes in lignin pathway.

Key words: Lignin, qRT-PCR, Lignin pathway, Lodging resistance

[1]Franker R, Mcmichael C M, Meyer K, Shirley A M, Cusumano J C, Chapple C. Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate-5-hydroxylase. Plant J, 2000, 22: 223–234

[2]Soltani B M, Ehlting J, Douqlas C J. Genetic analysis and epigenetic silencing of At4CL1 and At4CL2 expression in transgenic Arabidopsis. Biotechnology, 2006, 1: 1124–1136

[3]Sibout R, Baucher M, Gatineau M, Doorsselaere J V, Mila I, Pollet B, Maba B, Pilate G, Lapierre C, Boerjan W, Jouanin L. Expression of a poplar cDNA encoding a ferulate-5-hydroxylase/coniferaldehyde5-hydroxylase increases S lignin deposition in Arabidopsis thaliana, Plant Physiol Biochem, 2002, 40: 1087–1096

[4]Zhong R, W. Morrison W H III, Negrel J, Ye Z H. Dual methylation pathway in lignin biosynthesis. Plant Cell, 1998, 10: 2033–2045

[5]Zhong R, W. Morrison W H III, Himmelsbach D S, Farris L, Poole II, Ye Z H. Essential role of cafeoylcoenzyme o-methy l transferase in lignin biosynthesis in woody poplar plants. Plant Physiol, 2000, 124: 563–578

[6]Hu W J, Harding S A, Lung J, Popko J L, Ralph J, Stokke D D, Tsai C J, Chiang V L. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol, 1999, 17: 808–812

[7]Zhao Y L, Lu H, Tao X J, Chen X M, Jiang X N. Modulate the lignin biosynthesis by expression GRP1.8 promoter: anti-4CL1 gene in transgenic tobacco. J Beijing For Univ, 2003, 25(4): 16–20

[8]Guo D J, Chen F, Inoue K, Blount K J, Dixon R A. Down-regulation of caffeic acid 3-o-methyl transferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell, 2001, 13: 73–88

[9]Piquemal J, Chamayou S, Nadaud I, Beckert M, Barrière Y, Mila I, Lapierre C, Rigau J, Puigdomenech P, Jauneau A, Digonnet C, Boudet A M, Goffner D, Pichon M, Down-regulation of caffeic acid o-methyl transferase in maize revisited using a transgenic approach. Plant Physiol, 2002, 130: 1675–1685

[10]Thumma B R, Nolan M F, Evans R, Moran G F. Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics, 2005, 171: 1257–1265

[11]Bate N J, Orr J, Ni W, Meromi A, Nadler-Hassar T, Doerner P W, Dixon R A, Lamb C J, Elkind Y. Quantitative relationship between phenylalanine ammonialyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc Natl Acad Sci USA, 1994, 91: 7608–7612

[12]Hu W J, Akiyoshi K, Tsaich J. Compartmentalized expression of two structurally and functionally distinct 4-coumarate: CoA ligase genes in aspen (Populus tremuloides). Proc Natl Acad Sci USA, 1998, 95: 5407–5412

[13]Sewalt V J H, Ni W, Jung H G, Dixon R A. Lignin impact on fiber degradation: increased enzymatic digestibility of genetically engineered tobacco (Nicotiana tabacum) stems reduced in lignin content. J Agric Food Chem, 1997, 45: 1977–1983

[14]Jones L, Ennos A R, Turner S R. Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J, 2001, 26: 205–216

[15]Halpin C, Knight M E, Foxon G A. Manipulation of lignin quality by down-regulation of cinnamyl alcohol dehydrogenase. Plant J, 1994, 6: 339–350

[16]Jiang W-M(姜维梅), Zhang D-Q(张冬青), Xu C-X(徐春霄). Studies on the stem anatomy of Brsssica oil to lodging. J Zhejiang Agric Univ (Agric Life Sci)(浙江大学学报?农业与生命科学版), 2001, 27(4): 439–442 (in Chinese with English abstract)

[17]Thompson D L. Stalk strength of corn as measured by crushing strength and rind thickness. Crop Sci, 1963, 3: 323–329

[18]Zuber M S, Grogan C O. A new technique for measuring stalk strength in corn. Crop Sci, 1961, 1: 378–380

[19]Li X-C(李尧臣), Qi C-K(戚存扣). Lignin content and key gene expression in lignin synthesis of Brassica napus L. with lodging resistance. Jiangsu J Agricl Sci (江苏农业学报), 2011, 27(3): 481–48 (in Chinese with English abstract)

[20]Zhang J(张建), Chen J-C(陈金城), Tang Z-L(唐章林), Wang R(王瑞). Study on the physic-chemical properties of stem as related to lodging in rape. J Southwest Agric Univ (西南农业大学学报), 2006, 28(5): 763–765 (in Chinese with English abstract)

[21]Yang X-D(杨向东). The Study on the Relationship between Lignin Biosynthsis Manipulation and Brassica napus Resistance to Sclerotinia sclerotiorum and Lodging. PhD Dissertation of Chinese Academy of Agricultural Sciences, 2006 (in Chinese with English abstract)

[22]Yang X-D(杨向东), Wang H-Z(王汉中), Hu Z-M(胡赞民), Liu G-H(刘贵华), Shen J-X(沈金雄). The cloning, expression and activity assays of 4-CL cDNA from the Populus tomentosa. J Huazhong Agric Univ (华中农业大学学报), 2006, 25(2): 101–105 (in Chinese with English abstract)

[23]Yamauchi K, Yasuda S, Hamada K, Tsutsumi Y, Fukushima K. Multiform biosynthetic pathway of syringyl lignin in angiosperms. Planta, 2003, 216: 496–501

[24]Bugos R, Chiang V, Campbell W. cDNA cloning, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyl transferase of aspen. Plant Mol Biol, 1991, 17: 1203–1215

[25]Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia FA, Roberts K, Martin C. The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell, 1998, 10: 135–154

[26]Vanholme R, Storme V, Vanholme B, Sundin L, Christensen J H, Goeminne G, Halpin C, Rohde A, Morreel K, Boerjan W. A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell, 2012, 24: 3506–3529

[27]Baucher M, Monties B, Van M M, Boerjan W. Biosynthesis and genetic engineer in lignin. Crit Rev Plant Sci, 1998, 17: 125–197

[28]Zhang W-H(张文华). Genetic Analysis and QTL Mapping of Lodging Resistance Related Traits in Brassica napus. MS Thesis of Huazhong Agricultural University, 2010 (in Chinese with English abstract)

[1] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[2] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[3] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
[4] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[5] 赵小红,白羿雄,王凯,姚有华,姚晓华,吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响[J]. 作物学报, 2020, 46(4): 586-595.
[6] 高世武,傅志伟,陈云,林兆里,许莉萍,郭晋隆. 甘蔗热带种金属硫蛋白家族基因的克隆及响应重金属胁迫的表达分析[J]. 作物学报, 2020, 46(02): 166-178.
[7] 孙婷婷,王文举,娄文月,刘峰,张旭,王玲,陈玉凤,阙友雄,许莉萍,李大妹,苏亚春. 甘蔗脂氧合酶基因ScLOX1的克隆与表达分析[J]. 作物学报, 2019, 45(7): 1002-1016.
[8] 王凯,赵小红,姚晓华,姚有华,白羿雄,吴昆仑. 茎秆特性和木质素合成与青稞抗倒伏关系[J]. 作物学报, 2019, 45(4): 621-627.
[9] 王作敏,刘瑾,孙士超,张新宇,薛飞,李艳军,孙杰. 彩色棉多药和有毒化合物输出蛋白MATE家族基因的鉴定及表达分析[J]. 作物学报, 2018, 44(9): 1380-1392.
[10] 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379.
[11] 段方猛, 罗秋兰, 鲁雪莉, 齐娜伟, 刘宪舜, 宋雯雯. 玉米油菜素甾醇生物合成关键酶基因ZmCYP90B1的克隆及其对逆境胁迫的响应[J]. 作物学报, 2018, 44(03): 343-356.
[12] 尹能文**,李加纳**,刘雪,练剑平,付春,李威,蒋佳怡,薛雨飞,王君,柴友荣*. 高温干旱下油菜的木质化应答及其在茎与根中的差异[J]. 作物学报, 2017, 43(11): 1689-1695.
[13] 陈雪萍**,荆凌云**,王嘉,荐红举,梅家琴,徐新福,李加纳,刘列钊*. 甘蓝型油菜茎秆菌核病抗性与木质素及其单体比例的相关性分析及QTL定位[J]. 作物学报, 2017, 43(09): 1280-1289.
[14] 胡文冉,范玲,李晓荣,谢丽霞,杨洋,李波,陈方圆. 棉花纤维中木质素的相对分子量[J]. 作物学报, 2017, 43(06): 940-944.
[15] 苏亚春,黄珑,凌辉,王竹青,刘峰,苏炜华,黄宁,吴期滨,高世武,阙友雄. 甘蔗CDK基因的cDNA全长克隆与表达分析[J]. 作物学报, 2017, 43(01): 42-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!