欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (08): 1391-1399.doi: 10.3724/SP.J.1006.2013.01391

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

海岛棉GbMFT1基因的克隆及表达分析

顾超1,李超1,李晓波2,肖向文2,崔百明1,黄先忠1,*   

  1. 1石河子大学生命科学学院农业生物技术重点实验室,新疆石河子 832003;2中国科学院新疆理化技术研究所 / 干旱区植物资源化学重点实验室,新疆乌鲁木齐 830011
  • 收稿日期:2013-01-29 修回日期:2013-04-22 出版日期:2013-08-12 网络出版日期:2013-05-20
  • 通讯作者: 黄先忠, E-mail: xianzhongh106@163.com, Tel: 0993-2057262
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项(2011ZX08005-002)和新疆生产建设兵团博士基金项目(2012BB007)资助。

Cloning and Expression Analysis of GbMFT1 Gene in Gossypium barbadense L.

GU Chao1,LI Chao1,LI Xiao-Bo2,XIAO Xiang-Wen2,CUI Bai-Ming1,HUANG Xian-Zhong1,*   

  1. 1 Key Laboratory of Agrobiotechnology, College of Life Sciences, Shihezi University, Shihezi 832003, China; 2 Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
  • Received:2013-01-29 Revised:2013-04-22 Published:2013-08-12 Published online:2013-05-20
  • Contact: 黄先忠, E-mail: xianzhongh106@163.com, Tel: 0993-2057262

摘要:

通过RT-PCRRACE技术,从新疆海岛棉品种新海14中克隆得到了一个MFT (MOTHER OF FT AND TFL1)类似基因,命名为GbMFT1基因(GenBank登录号为KC513744)GbMFT1基因的开放阅读框(ORF)528 bp,编码175个氨基酸的蛋白,含一个磷脂酰乙醇胺结合蛋白(PEBP)结构域。GbMFT1蛋白的羧基端含有MFT蛋白都含有的脯氨酸。系统进化树分析表明GbMFT1编码产物与葡萄、番茄亲缘关系较近,属于同一进化分枝。实时荧光定量PCR分析表明,GbMFT1基因在棉花的不同组织中均有表达,在花瓣中的表达量较高;在纤维发育的不同时期中均有表达,在开花后2 d的胚珠、9 d的纤维中表达量最高。半定量RT-PCR结果表明,GbMFT1基因在刚萌发的种子中表达量高,用不同浓度的ABA处理种子后其表达变化不明显,表明GbMFT1基因的表达不受ABA的调节。

关键词: GbMFT1基因, 早花, 表达分析, 成花素

Abstract:

One MFT (MOTHER OF FT AND TFL1)-like homolog was isolated from Gossypium barbadense L. cv. Xinhai14 through RT-PCR and RACE method, which was designated as GbMFT1 gene. The open reading frame (ORF) of GbMFT1 is 528 bp in length, encoding a putative protein of 175 amino acids. GbMFT1 gene has a phosphatidylethanolamin-binding protein (PEBP) conserved motif. Liking almost all MFT-like proteins, GbMFT1 protein has a conserved proline residue near the C-terminus. Phylogenetic analysis revealed that GbMFT1 showed closer kinship with VvMFT and SP2G, indicating that they belong to the same evolutionary branch. Expression analysis by qRT-PCR indicated that GbMFT1 displayed a much broader expression range, with a maximum expression in petal. GbMFT1 was also expressed in different developmental stages of cotton fibres, especially in the two DPA ovules and nine DPA fibres. Expression analysis by semi-quantitative method indicated that GbMFT1 had a high expression level at the begining of seed germination. There existed no significant difference of expression in germinating seeds treated with different concentrations of ABA, indicating the expression of GbMFT1 is not regulated by ABA. Our results lay a good foundation in studying the function of cotton GbMFT1 gene further.

Key words: GbMFT1 gene, Early flowering, Gene expression, Florigen

[1]Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E. Control of in?orescence architecture in Antirrhinum. Nature, 1996, 379: 791–797

[2]Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. In?orescence commitment and architecture in Arabidopsis. Science, 1997, 275: 80–83

[3]Kardailsky I, Shukla V, Ahn J, Dagenais N, Christensen S, Nguyen J, Chory J, Harrison M, Weigel D. Activation tagging of the ?oral inducer FT. Science, 1999, 286: 1962–1965

[4]Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. A pair of related genes with antagonistic roles in mediating ?owering signals. Science, 1999, 286: 1960–1962

[5]Hanzawa Y, Money T, Bradley D. A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci USA, 2005, 102: 7748–7753

[6]Ahn J H, Miller D, Winter V J, Banfield M J, Lee J H, Yoo S Y, Henz S R , Brady R L, Weigel D. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J, 2006, 25: 605–614

[7]Ohshima S, Murata M, Sakamoto W, Ogura Y, Motoyoshi F. Cloning and molecular analysis of the Arabidopsis gene Terminal Flower 1. Mol Gen Genet, 1997, 254: 186–194

[8]Mimida N, Goto K, Kobayashi Y, Araki T, Ahn J H, Weigel D, Murata M, Motoyoshi F, Sakamoto W. Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue. Genes Cells, 2001, 6: 327–336

[9]Yoo S Y, Kardailsky I, Lee J S, Weigel D, Ahn J H. Acceleration of ?owering by overexpression of MFT (MOTHER OF FT AND TFL1). Mol Cells, 2004, 17: 95–101

[10]Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T. TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol, 2005, 46: 1175–1189

[11]Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Glakountis A, Farrona S, Gissot L, Turnbul C, Coupland G. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 2007, 316: 1030–1033

[12]Jaeger K E, Wigge P A. FT protein acts as a long-range signal in Arabidopsis. Curr Biol, 2007, 17: 1050–1054

[13]Zeevaart J A D. Leaf-produced ?oral signals. Curr Opin Plant Biol, 2008, 11: 541–547

[14]Tamaki S, Matsuo S, Wong H, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science, 2007, 316:1033–1036

[15]Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri Y A, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature, 2011, 476: 332–335

[16]Navarro C, Abelenda J A, Cruz-Oró E, Cuéllar C A, Tamaki S, Silva J, Shimamoto K, Prat S. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature, 2011, 478: 119–121

[17]Ruonala R, Rinne P L H, Kangasjärvi J, van der Schoot C. CENL1 expression in the rib meristem affects stem elongation and the transition to dormancy in Populus. Plant Cell, 2008, 20: 59–74

[18]Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner A M, Jansson S, Strauss S H, Nilsson O. CO/FT regulatory module controls timing of ?owering and seasonal growth cessation in trees. Science, 2006, 312: 1040–1043

[19]Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez J P, Eshed Y. The tomato FT ortholog triggers systemic signals that regulate growth and ?owering and substitute for diverse environmental stimuli. Proc Natl Acad Sci USA, 2006, 103: 6398–6403

[20]Hedman H, Källman T, Lagercrantz U. Early evolution of the MFT-like gene family in plants. Plant Mol Biol, 2009, 70: 359–369

[21]Gubler F, Millar A A, Jacobsen J V. Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol, 2005, 8: 183–187

[22]Xi W Y, Liu C, Hou X L, Yu H. MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell, 2010, 22: 1733–1748

[23]Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura H. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell, 2010, 23: 3215–3229

[24]Argiriou A, Michailidis G, Tsaftaris A S. Characterization and expression analysis of TERMINAL FLOWER1 homologs from cultivated alloteraploid cotton (Gossypium hirsutum) and its diploid progenitors. J Plant Physiol, 2008, 165: 1636–1646

[25]Dong R(东锐), Yuan H-Y(院海英), Gu C(顾超), Zheng Y-Y(郑银英), Huang X-Z(黄先忠), Cui B-M(崔百明). Clone and primary analysis of the function of GhFTL1 gene in cotton (Gossypium hirsutum). Cotton Sci (棉花学报), 2011, 23(6): 515–521 (in Chinese with English abstract)

[26]Hu G-H(胡根海), Yu S-X(喻树迅). Extraction of high-quality total RNA in cotton leaf with improved CTAB method. Cotton Sci (棉花学报), 2007, 19(1): 69–70 (in Chinese with English abstract)

[27]Kumar S, Nei M, Dudley. MEGA: a Biologist-centric software for evolutionary of DNA and protein sequences. Briefings Bioninform, 2008, 9: 299–306

[28]Reiersen H, Rees A R. The hunchback and its neighbours: proline as an environmental modulator. Trends Biochem Sci, 2001, 26: 679–684

[29]Chardon F, Damerval C. Phylogenomic analysis of the PEBP gene family in cereals. J Mol Evol, 2005, 61: 579–590

[30]Carmel-Goren L, Liu Y S, Lifschitz E, Zamir D. The SELF-PRUNING gene family in tomato. Plant Mol Biol, 2003, 52: 1215–1222

[31]Carmona M J, Calonje M, Martínez-Zapater J M. The FT/TFL1 gene family in grapevine. Plant Mol Biol, 2007, 63: 637–650

[32]Igasaki T, Watanabe Y, Nishiguchi M, Kotoda N. The FLOWER LOCUS T/TERMINAL FLOWER 1 family in Lombardy poplar. Plant Cell Physiol, 2008, 49: 291–300

[33]Danilevskaya O N, Meng X, Hou Z, Ananiev E V, Simmons C R. A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol, 2008, 146: 250–264

[34]Sun H-B(孙洪波), Jia Z(贾贞), Han T-F(韩天富). Roles of PEBP family genes in the development of plants. Plant Physiol J (植物生理学通讯), 2009, 45(8): 739–747 (in Chinese with English abstract)

[35]Karlgren A, Gyllenstrand N, Kallman T, Sundstrom J F, Moore D, Lascoux M, Lagercrantz U. Evolution of the PEBP gene family in plants: functional diversi?cation in seed plant evolution. Plant Physiol, 2011, 156: 1967–1977

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[3] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[4] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[5] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[6] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[7] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[8] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[9] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[10] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[11] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[12] 李国纪, 朱林, 曹金山, 王幼宁. 大豆GmNRT1.2aGmNRT1.2b基因的克隆及功能探究[J]. 作物学报, 2020, 46(7): 1025-1032.
[13] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
[14] 梁思维,姜昊梁,翟立红,万小荣,李小琴,蒋锋,孙伟. 玉米HD-ZIP I亚家族基因鉴定及表达分析[J]. 作物学报, 2020, 46(4): 532-543.
[15] 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!