作物学报 ›› 2013, Vol. 39 ›› Issue (11): 2030-2038.doi: 10.3724/SP.J.1006.2013.02030
叶露幻1,沈唯军1,郑宝刚1,宋涛1,陈国祥1,*,吕川根2
YE Lu-Huan1,SHEN Wei-Jun1,ZHENG Bao-Gang1,SONG Tao1,CHEN Guo-Xiang1,*,LÜ Chuan-Gen2
摘要:
为探讨高产杂交稻两优培九在衰老过程中,剑叶光合膜蛋白质复合物的含量变化规律及其与光能吸收、转化、传递的关系,以大田栽培自然衰老剑叶为材料,利用活体叶绿素荧光动力学技术,并结合类囊体膜蛋白质复合物蓝绿温和胶电泳分析。结果表明,两优培九剑叶叶绿素含量、光合性能、类囊体膜蛋白稳定性等都在抽穗期达到顶峰,随后开始衰退,在扬花期、灌浆期尚保持较高水平,而进入籽粒成熟阶段衰退明显;随着衰老进程,光合膜蛋白质复合物有序非同步降解,稳定性为LHCII > PSIIcore > PSIcore > ATPase & Cyt b6/f > LHCI;PSI和PSII蛋白和相应电子传递活性的稳定性及下降幅度差异较大;衰老过程叶绿素a/b的不断下降与相对于反应中心更稳定的捕光天线有关,剑叶生长后期LHCII维持高水平保持了叶片对光能的吸收,并可能在调节光系统间能量分布和协助过剩能量耗散中起重要作用。
[1]Lu D-Z(陆定志), Pan Y-C(潘裕才), Ma Y-F(马跃芳), Lin Z-D(林宗达), Bao W-Q(鲍为群), Jin Y-M(金逸民), You S-P(游树鹏). Physiological and biochemical studies on leaf senescence at heading and grain formation stage in hybrid rice. Sci Agric Sin (中国农业科学), 1988, 21(3): 21–26 (in Chinese with English abstract)[2]Lei H(雷华), Chen G-X(陈国祥), Gao Z-P(高志萍), Wei X-D(魏晓东), Xu Y-L(徐艳丽), Chu H-J(储慧君), Shi D-W(施大伟), Lü C-G(吕川根). Cellular biological characteristics of chloroplast of flag leaves in super hybrid rice Liangyoupeijiu during senescence. Chin J Rice Sci (中国水稻科学), 2008, 22(3): 279–284 (in Chinese with English abstract)[3]Chen B-S(陈炳松), Zhang Y-H(张云华), Li X(李霞), Jiao D-M(焦德茂). Photosynthetic characteristic and assimilate distribution in super hybrid rice Liangyoupeijiu at late growth stage. Acta Agron Sin (作物学报), 2002, 28(6): 777–782 (in Chinese with English abstract)[4]Li X-R(李小蕊), Chen G-X(陈国祥), Xiang X-L(项秀兰), Shi D-W(施大伟), Han X-L(韩晓磊), Lü C-G(吕川根). Physiological characteristics of functional leaves from a high-yielding hybrid rice, “Liangyoupeijiu”, during natural senescence. Crops (作物杂志), 2008, 126(5): 49–53 (in Chinese with English abstract)[5]Zhang C J, Chu H J, Chen G X, Shi D W, Zuo M, Wang J, Lu C G, Wang P, Chen L. Photosynthetic and biochemical activities in flag leaves of a newly developed superhigh-yield hybrid rice (Oryza sativa) and its parents during the reproductive stage. J Plant Res, 2007, 120: 209–217[6]Zhang M P, Zhang C J, Yu G H, Jiang Y Z, Strasser R J, Yuan Z Y, Yang X S, Chen G X. Changes in chloroplast ultrastructure, fatty acid components of thylakoid membrane and chlorophyll a fluorescence transient in flag leaves of a super-high-yield hybrid rice and its parents during the reproductive stage. J Plant Physiol, 2010, 167: 277–285[7]Zhang C J, Chen L, Shi D W, Chen G X, Lu C G, Wang P, Wang J, Chu H J, Zhou Q C, Zuo M, Sun L. Characteristics of ribulose-1,5-bisphosphate carboxylase and C4 pathway key enzymes in flag leaves of a super-high-yield hybrid rice and its parents during the reproductive stage. S Afr J Bot, 2007, 73: 22–28[8]Dekker J P, Boekema E J. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta, 2005, 1706: 12–39[9]Schägger H, Jagow-von G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem, 1991, 199: 223–231[10]Peng L W, Ma J F, Chi W, Guo J K, Zhu S Y, Lu Q T, Lu C M, Zhang L X. LOW PSII ACCUMULATION1 is involved in efficient assembly of photosystem II in Arabidopsis thaliana. Plant Cell, 2006, 18: 955–969[11]Chen X, Zhang W, Xie Y J, Lu W, Zhang R X. Comparative proteomics of thylakoid membrane from a chlorophyll b-less rice mutant and its wild type. Plant Sci, 2007, 137: 397–407[12]Arnon D I. Copper enzymes in isolated chloroplasts, Polyphenol oxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1–15[13]Strasser R J, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P, eds. Probing Photosynthesis: Mechanism, Regulation and Adaptation. London: Taylor and Francis Press, 2000. Chapter 25. pp 445–483[14]Wei X-D(魏晓东), Chen G-X(陈国祥), Shi D-W(施大伟), Liu D(刘丹), Tang J-H(唐加红), Li X(李霞). Effects of drought on fluorescence characteristics of photosystem II in leaves of Ginkgo biloba. Acta Ecol Sin (生态学报), 2012, 32(23): 7492–7500 (in Chinese with English abstract)[15]Dunahay T G, Staehelin L A, Seibert M. Structural, biochemical and biophysical characterization of four oxygen evolving photosystem II preparations from spinach. BBA-Bioenergetics, 1984, 764: 179–193[16]Coombs J, Hall D O, Leegood R C. Photosynthetic energy conversion. In: Coombs J, Hall D O, Long S P, eds. Techniques in Bioproductivity and Photosynthesis. Oxford: Pergamon Press, 1985. pp 136–137[17]Matilem P. Chloroplast senescence. In: Baker N, Thomas H, eds. Crop Photosynthesis: Spatial and Temporal Determinants. Amsterdam: Elsevier, 1992. pp 413–440[18]Taiz L, Zeiger E, eds. Song C-P(宋纯鹏), Wang X-L(王学路), et al. trans. Plant Physiology (植物生理学). Beijing: Science Press, 2009. pp 102–126 (in Chinese)[19]Li P-M(李鹏民), Gao H-Y(高辉远), Strasser R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. J Plant Physiol Mol Biol (植物生理学与分子生物学学报), 2005, 31(6): 559–566 (in Chinese with English abstract)[20]Strasser R J, Srivastava A, Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol, 1995, 61: 32–42[21]Zhang Z-S(张子山), Li G(李耕), Gao H-Y(高辉远), Liu P(刘鹏), Yang C(杨程), Meng X-L(孟祥龙). Changes of photochemistry activity during senescence of leaves in stay green and quick-leaf-senescence inbred lines of maize. Acta Agron Sin (作物学报), 2013, 39(1): 93–100 (in Chinese with English abstract)[22]Guissé B, Srivastava A, Strasser R J. The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat stressed leaves. Archs Sci Genève, 1995, 48: 147–160[23]Strasser R J, Tsimill-Michael M, Srivastava A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee, eds. Advances in Photosynthesis and Respiration. Netherlands: KAP Press, 2004. Chapter 12, pp 1–47[24]Srivastava A, Strasser R J, Govindjee. Greening of peas: parallel measurements of 77K emission spectra, OJIP chlorophyll a fluorescence transient, period four cscillation of the initial fluorescence level, delayed light emission, and P700. Photosynthetica, 1999, 37: 365–392[25]Shao J Z, Zhang Y B, Yu J L, Guo L, Ding Y. Isolation of thylakoid mmbrane complexes from rice by a new double-strips BN/SDS-PAGE and bioinformatics prediction of stromal ridge subunits interaction. Plos One, 2011, 6(5): e20342[26]Chen X(陈熙), Cui X-J(崔香菊), Zhang W(张炜). Comparative proteomics of thylakoid membrane from a low chlorophyll b rice and its wild type. Prog Biochem Biophys (生物化学与生物物理进展), 2006, 33(7): 653–659 (in Chinese with English abstract)[27]Cao S-Q(曹树青), Zhai H-Q(翟虎渠), Zhang R-X(翟虎渠), Yang T-N(杨图南), Kuang T-Y(匡廷云). Studies on photosynthetic rate and function duration of rice germplasm resources. Chin J Rice Sci (中国水稻科学), 2001, 15(1): 29–34 (in Chinese with English abstract)[28]Yu G-H(于光辉), Chen G-X(陈国祥), Jiang Y-Z(江玉珍), Yuan Z-Y(苑中原), Lü C-G(吕川根). Light reaction characteristics in functional leaves of Liangyoupeijiu in the reproductive growth stage. Acta Agron Sin (作物学报), 2010, 36(11): 1959–1966 (in Chinese with English abstract)[29]Lin Z-F(林植芳), Li S-S(李双顺), Lin G-Z(林桂珠), Sun G-C(孙谷畴), Guo J-Y(郭俊彦). Superoxide dismutase activity and lipid peroxidation in relation to senescence of rice lraves. Acta Bot Sin (植物学报), 1984, 26(6): 605–615 (in Chinese with English abstract)[30]Oukarroum A, Schansker G, Strasser R J. Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol Plant, 2009, 137: 188–199[31]Barros T, Kühlbrandt W. Crystallisation, structure and function of plant light-harvesting complex II. BBA-Bioenergetics, 2009, 1786: 753–772[32]Allen J F, Bennet J, Steinback K E, Armtzen C J. Chloroplast protein phsphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature, 1981, 219: 25–29[33]Ruban A V, Young A J, Pascal A A, Horton P. The effects of illumination on the xanthophyll composition of the photosystem II Light-harvesting complexes of spinach thylakoid membranes. Plant Physiol, 1999, 104: 227–234[34]Xu X-M(许晓明), Zhang R-X(张荣铣), Tang Y-L(唐运来). Effect of low content chlorophyll on distribution properties of absorbed light energy in leaves of mutant rice. Sci Agric Sin (中国农业科学), 2004, 37(3): 339–343 (in Chinese with English abstract) |
[1] | 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627. |
[2] | 王素芳,薛惠云,张志勇,汤菊香. 棉花根系生长与叶片衰老的协调性[J]. 作物学报, 2020, 46(01): 93-101. |
[3] | 吴含玉,张雅君,张旺锋,王克如,李少昆,姜闯道. 田间密植诱导抽穗期玉米叶片衰老时的光合作用机制[J]. 作物学报, 2019, 45(2): 248-255. |
[4] | 刘妍,刘兆新,何美娟,刘婷如,杨坚群,甄晓宇,栗鑫鑫,李向东,杨东清. 冬闲期耕作方式对连作花生叶片衰老和产量的影响[J]. 作物学报, 2019, 45(1): 131-143. |
[5] | 吕国锋,范金平,张伯桥,高德荣,王慧,刘业宇,吴素兰,程凯,王秀娥. 小麦旗叶衰老过程不同数学模型拟合比较及衰老特征分析[J]. 作物学报, 2019, 45(1): 144-152. |
[6] | 李倩,齐凌云,殷俐娜,王仕稳,邓西平. 低氮诱导小麦灌浆期旗叶衰老与膜脂的关系[J]. 作物学报, 2018, 44(8): 1221-1228. |
[7] | 李荣发,刘鹏,杨清龙,任昊,董树亭,张吉旺,赵斌. 玉米密植群体下部叶片衰老对植株碳氮分配与产量形成的影响[J]. 作物学报, 2018, 44(7): 1032-1042. |
[8] | 万丽丽, 王转茸, 辛强, 董发明, 洪登峰, 杨光圣. BnA7HSP70分子伴侣结合蛋白超表达能够提高甘蓝型油菜耐旱性[J]. 作物学报, 2018, 44(04): 483-492. |
[9] | 郑宾,赵伟,徐铮,高大鹏,姜媛媛,刘鹏,李增嘉,李耕,宁堂原. 不同耕作方式与氮肥类型对夏玉米光合性能的影响[J]. 作物学报, 2017, 43(06): 925-934. |
[10] | 张巧玉,王逸茹,安静,王保民,田晓莉. 根-冠互作对棉花叶片衰老的影响[J]. 作物学报, 2017, 43(02): 226-237. |
[11] | 翟玉山,邓宇晴,董萌,徐倩,程光远,彭磊,林彦铨*,徐景升*. 甘蔗捕光叶绿素a/b 结合蛋白基因ScLhca3 的克隆及表达[J]. 作物学报, 2016, 42(09): 1332-1341. |
[12] | 卢霖,董志强*,董学瑞,李光彦. 乙矮合剂对不同密度夏玉米花粒期不同部位叶片衰老特性的影响[J]. 作物学报, 2016, 42(04): 561-573. |
[13] | 张涛,孙玉莹,郑建敏,程治军,蒋开锋,杨莉,曹应江,游书梅,万建民,郑家奎. 水稻早衰叶突变体PLS2的遗传分析与基因定位[J]. 作物学报, 2014, 40(12): 2070-2080. |
[14] | 桑贤春,徐芳芳,朱小燕,邢亚迪,何沛龙,张长伟,杨正林,何光华. 水稻早衰突变体esl5的鉴定及其基因精细定位[J]. 作物学报, 2014, 40(07): 1182-1189. |
[15] | 王永军,杨今胜,袁翠平,柳京国,李登海,董树亭. 超高产夏玉米花粒期不同部位叶片衰老与抗氧化酶特性[J]. 作物学报, 2013, 39(12): 2183-2191. |
|