欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (02): 362-368.doi: 10.3724/SP.J.1006.2014.00362

• 研究简报 • 上一篇    下一篇

燕麦对碱胁迫的阳离子响应机制

萨如拉1,刘景辉1,*,刘伟1,白健慧1,王占海2   

  1. 1内蒙古农业大学农学院,内蒙古自治区呼和浩特 010019;2呼伦贝尔市农业科学研究所,内蒙古呼伦贝尔 162650
  • 收稿日期:2013-05-08 修回日期:2013-11-24 出版日期:2014-02-12 网络出版日期:2013-12-05
  • 通讯作者: 刘景辉, E-mail: cauljh@aliyun.com, Tel: 0471-87281507
  • 基金资助:

    本研究由国家自然科学基金项目(31060174, 30660084), 内蒙古自然科学基金项目(2010Zd07, 200607010301), 国家现代农业产业技术体系建设专项(CARS-08-B-5)和内蒙古农业大学科技创新团队项目(NDTD2010-8)资助。

Cation-Responsive Mechanisms of Oats to Alkali Stress

SA Ru-La1,LIU Jing-Hui1,*,LIU Wei1,BAI Jian-Hui1,WANG Zhan-Hai2   

  1. 1Agricultural college, Inner Mongolia Agricultural University, Hohhot 010019, China; 2Institute of Agricultural Sciences, Hulun Buir 162650, China
  • Received:2013-05-08 Revised:2013-11-24 Published:2014-02-12 Published online:2013-12-05
  • Contact: 刘景辉, E-mail: cauljh@aliyun.com, Tel: 0471-87281507

摘要:

以耐碱性燕麦品种Vao-9和碱敏感性品种白燕5号为试验材料,采用盆栽法,用255075100 mmol L-1碱浓度(Na2CO3NaHCO3按摩尔比11混合)进行短期(14 d)和长期(28 d)胁迫处理,观测两品种根、茎、叶中Na+K+Ca2+Mg2+吸收及分配特点,并从离子平衡吸收与分配角度,探讨燕麦对碱胁迫的生理适应机制。胁迫处理14 d后,燕麦体内Na+增加,K+下降,Ca2+Mg2+变化不大,且两品种间各器官中4种离子的分配比例差异不显著。胁迫处理28 d后,两品种各器官中Na+增幅较大,K+Ca2+Mg2+降幅较大。Vao-9植株体内Na+Ca2+含量大于白燕5号,但K+Mg2+含量与白燕5号无显著差异,但两品种间各器官中4种离子的分配特点不同;当胁迫浓度达到100 mmol L-1时,与白燕5号相比,Vao-9叶片中少分配5.9个百分点Na+,多分配13.5个百分点K+28.9Ca2+10.9Mg2+,茎中多分配5.4个百分点Na+,少分配9.8个百分点K+,根中少分配28.9个百分点Ca2+10.9Mg2+,因而Vao-9叶片中Na+ /K+Na+ /Ca2+Na+ /Mg2+值较白燕5号低。可见,燕麦通过提高阳离子选择吸收及器官分配能力以适应碱胁迫。

关键词: 碱胁迫, 燕麦, 阳离子平衡

Abstract:

In a pot experiment, an alkali-tolerant oat variety, Vao-9, and an alkali-sensitive variety, Baiyan 5, were exposed to 25, 50, 75, and 100 mmol L-1 of alkali stress (molar ratio of Na2CO3-to=NaHCO3 = 1:1). The contents of Na+, K+, Ca2+, and Mg2+ absorbed by oat seedling and their distribution characteristics in root, stem, and leaf were measured after a short-term (14 d) or a long-term (28 d) stress treatment. The objective was to understand the physiological adaptation to alkali stress in oat in the view of ion balance absorption and distribution. After short-term stress, the cation contents in oat plants showed the variations of increased Na+, decreased K+, and minor changes in Ca2+ and Mg2+. Besides, the distribution proportions of the four ions in various organs were not significantly different between the two varieties. Compared to short-term stress, long-term stress resulted in larger increase of Na+ content and larger decreases of K+, Ca2+, and Mg2+ contents in all organs of both varieties. Vao-9 absorbed more Na+ and Ca2+ than Baiyan 5, and the absorptions of K+ and Mg2+ were not significantly different between varieties, but the distribution characteristics of the four ions in various organs were different between the two varieties.Under 100 mmol L-1 alkali stress, 5.9 percent Na+ in leaf were lower distributed and 13.5 percent K+, 28.9 Ca2+, 10.9 Mg2+ more distributed in Vao-9 than in Baiyan 5, 5.4 percent Na+ in stem higher and 9.8 K+ lower in Vao-9 than in Baiyan 5 , 28.9 Ca2+, 10.9 Mg2+ in root were lower in Vao-9 than in Baiyan 5, As a result, the Na+ content and the ratios of Na+/K+, Na+/Ca2+, and Na+/Mg2+ in leaf were lower in Vao-9 than in Baiyan 5. Clearly, oat plant has the mechanism of selective absorption and distribution of various cations in different organs in response to alkali stress.

Key words: Alkali stress, Oat, Cation iquilibrium

[1]Evelin H, Kapoor R, Giri B. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot, 2009, 104: 1263–1281



[2]Parida A K, Das A B, Mittra. Effects of salt on growth, ion accumulation photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees-Struct Func, 2004, 18: 167–174



[3]Borsani O, Valpuesta V, Botella M A. Developing salt tolerant plants in a newcentury: a molecular biologyapproach. Plant Cell, Tissue Organ Cult, 2003, 73: 101–115



[4]Lauchli A. Calcium, salinity and the plasma membrane. In: Leonard R T, Hepler P K, eds. Calcium in plant growth and development. Rockville, Mary-land, USA: American Society of Plant Physiologists, 1990. pp 26–35



[5]李娟. 植物钾、钙、镁素营养的研究进展. 福建稻麦科技, 2007, 25(1): 39–42



Li J. Research progress in potassium, calcium, magnesium nutrition of plant. Fujian Sci Tech Rice Wheat, 2007, 25(1): 39–42 (in Chinese)



[6]鄂志国, 张丽靖. 水稻盐胁迫应答的分子机制. 杂交水稻, 2010, 25(2): 1–5



E Z G, Zhang L J. Molecular mechanism of rice responses to salt stress. Hybrid Rice, 2010, 25(2): 1–5 (in Chinese with English abstract)



[7]范远, 任长忠, 李品芳, 任图生. 盐碱胁迫下燕麦生长及阳离子吸收特征. 应用生态学报, 2011, 22: 2875–2882



Fan Y, Ren C Z, Li P F, Ren T S. Oat growth and cation absorption characteristics under salt and alkali stress. Chin J Appl Ecol, 2011, 22: 2875–2882 (in Chinese with English abstract)



[8]王波, 宋凤斌. 燕麦对盐碱胁迫的反应和适应性. 生态环境, 2006, 15: 625–629



Wang B, Song F B. Physiological responses and adaptive capacity of oats to saline-alkali stress. Ecol Environ, 2006, 15: 625–629 (in Chinese with English abstract)



[9]毛明艳, 方正. NaHCO3胁迫对燕麦幼苗生长及相关生理指标的影响. 安徽农业科学, 2009, 37: 4468–4470



Mao M Y, Fang Z. Effects of NaHCO3 stress on the growth and some physiological indexes in of oat seedlings. J Anhui Agric Sci, 2009, 37: 4468–4470 (in Chinese with English abstract)



[10]Mühling K H, Lauchli A. Effect of salt stress on growth and cation compartmentation in leaves of two plant species differing in salt tolerance. J Plant Physiol, 2002, 59: 137–146



[11]商学芳, 董树亭, 郑世英, 王丽燕. 玉米种子萌发过程中Na+、K+和Ca2+含量变化与耐盐性关系. 作物学报, 2008, 34: 333–336



Shang X F, Dong S T, Zheng S Y, Wang L Y. Relationship between changes of Na+, K+, and Ca2+ contents during seed germination and salt tolerance in maize. Acta Agron Sin, 2008, 34: 333–336 (in Chinese with English abstract)



[12]王学征, 李秋红, 吴凤芝. NaCl胁迫下栽培型番茄Na+、K+吸收、分配和转运特性. 中国农业科学, 2010, 43: 1423–1432



Wang X Z, Li Q H,Wu F Z. Study on the Characteristics of absorption, distribution and selective transport of Na+ and K+ in tomato plants under salt stress. Sci Agric Sin, 2010, 43: 1423–1432 (in Chinese with English abstract)



[13]任志彬, 王志刚, 聂庆娟, 黄大庄, 马向超. 盐胁迫对锦带花幼苗生长及不同部位 Na+、K+、Ca2+、Mg2+离子质量分数的影响. 东北林业大学学报, 2011, 39(5): 24–27



Ren Z B, Wang Z G, Nie Q J, Huang D Z, Ma X C. Effect of salt stress on growth and ion contents in Weigela florida cuttings. J North For Univ, 2011, 39(5): 24–27 (in Chinese with English abstract)



[14]Talukder N M, Dutta R K. Salinity effect on mineral nutrient distribution along roots and shoots of rice (Oryza sativa L.) genotypes differing in salt tolerance. Arch Agron Soil Sci, 2011, 57: 33–45



[15]王晓冬, 王成, 马智宏, 侯瑞锋, 高权, 陈泉. 短期NaCl胁迫对不同小麦品种幼苗K+吸收和Na+、K+积累的影响. 生态学报, 2011, 31: 2822–2830



Wang X D, Wang C, Ma Z H, Hou R F, Gao C, Chen Q. Effect of short term salt stress on the absorption of K+ and accumulation of Na+, K+ in seedlings of different wheat varieties. Acta Ecol Sin, 2011, 31: 2822–2830 (in Chinese with English abstract)



[16]於丙军, 罗庆云, 刘友良. 盐胁迫对盐生野大豆生长和离子分布的影响. 作物学报, 2001, 27: 776–780



Yu B J, Luo Q Y, Liu Y L. Effects of salt stress on growth and ionic distribution of salt-bornGlycine soja. Acta Agron Sin, 2001, 27: 776–780 (in Chinese with English abstract)



[17]马建华, 郑海雷, 赵中秋, 张春光. 植物抗盐机理研究进展. 生命科学研究, 2001, 5: 175–179



Ma J H, Zheng H L, Zhao Z Q, Zhang C G. Progress in mechanisms of plant resistance to salt stress. Life Sci Res, 2001, 5: 175–179 (in Chinese with English abstract)



[18]郭伟, 王庆祥, 于立河. 盐碱混合胁迫对小麦幼苗阳离子吸收和分配的影响. 麦类作物学报, 2011, 31: 735–740



Guo W, Wang Q X, Yu L H. Effects of salinity alkalinity stress on cation absorption and distribution in wheat seedlings. J Triticeae Crops, 2011, 31: 735–740 (in Chinese with English abstract)



[19]Hasegawa P M, Bressan R A, Zhu J K, Bohnert Paulm H J. Plant cellular and molecular responses to high salinity. Plant Physiol Plant Mol Biol, 2000, 51: 463–499



[20]辛承松, 董合忠, 唐薇, 温四民. 棉花盐害与耐盐性的生理和分子机理研究进展. 棉花学报, 2005, 17: 309–313



Xin C S, Dong H Z, Tang W, Wen S M. Physiological and molecular mechanisms of salt injury and salt tolerance in cotton. Cotton Sci, 2005, 17: 309–313 (in Chinese with English abstract)



[21]李品芳, 白文波, 杨志成. NaCl胁迫对苇状羊茅离子吸收与运输及其生长的影响. 中国农业科学, 2005, 38: 1458–1565



Li P F, Bai W B, Yang Z C. Effects of NaCl stress on ions absorption and transportation and plant growth of tall fescue. Sci Agric Sin, 2005, 38: 1458–1565 (in Chinese with English abstract)



[22]张海燕. 盐胁迫下盐地碱蓬体内无机离子含量分布特点的研究. 西北植物学报, 2002, 22: 129–135



Zhang H Y. A study on the characters of content of inorganic ions in salt-stressed Suaeda salsa. Acta Bot Boreali-Occident Sin, 2002, 22: 129–135 (in Chinese with English abstract)



[23]赵学良, 张彦才. NaCI胁迫对棉花苗期营养元素吸收与含量的影响. 河北农业大学学报, 1992, 15(2): 41–44



Zhao X L, Zhang Y C. Influence of NaCl stress on the uptake and concentrations of nutriments in cotton Seedlings. J Agric Univ Hebei, 1992, 15(2): 41–44 (in Chinese with English abstract)



[24]孙小芳, 刘友良. NaCl胁迫下棉花体内Na+、K+分布与耐盐性. 西北植物学报, 2000, 20: 1027–1033



Sun X F, Liu Y L. Distribution of Na~+ and K~+ in cotton plant under NaCl stress and salt tolerance. Acta Bota Boreali-Occident Sin, 2000, 20: 1027–1033 (in Chinese with English abstract)



[25]赵旭, 王林权, 周春菊, 尚浩博. 盐胁迫对四种基因型冬小麦幼苗Na+、K+吸收和累积的影响. 生态学报, 2007, 27: 205–213



Zhao X, Wang L Q, Zhou C J, Shang H B. Effects of salt stress on the absorption and accumulation of Na+ and K+ in seedlings of four winter wheat (Tritium aestivum) genotypes. Acta Ecol Sin, 2007, 27: 205–213 (in Chinese with English abstract)



[26]Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2002, 7: 405–410



[27]杨帆, 丁菲, 杜天真. 盐胁迫下构树幼苗各器官中K+、Ca2+、Na+和Cl-含量分布及吸收特征. 应用生态学报, 2009, 20: 767–772



Yang F, Ding F, Du T Z. Absorption and allocation characteristics of K+, Ca2+, Na+ and Cl-1 in different organs of Broussonetia papyrifera seedlings under NaCl stress. Chin J Appl Ecol, 2009, 20: 767–772 (in Chinese with English abstract)



[28]Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review. Ecol Toxicol Environ Safety, 2005, 60: 324–349



[29]郁万文, 曹帮华, 吴丽云. 盐胁迫下刺槐无性系生长和矿质营养平衡研究. 西北植物学报, 2005, 25: 2097–2102



Yu Y W, Cao B H, Wu L Y. Growths and mineral nutrient balance of black locust clones under salt stress. Acta Bot Boreali-Occident Sin, 2005, 25: 2097–2102 (in Chinese with English abstract)



[30]Yang C W, Chong J N, Li C Y, Kim C M, Shi D C, Wang D L. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil, 2007, 294: 263–276



[31]郑青松, 王仁雷, 刘友良. 钙对盐胁迫下棉花离子吸收分配的影响. 植物生理学报, 2001, 27: 325–330



Zheng Q S, Wang R X, Liu Y L. Effects of Ca2+ on absorption and distribution of ions in salt-treated cotton seedlings. Acta Phytol Sin, 2001, 27: 325–330 (in Chinese with English abstract)

[1] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604.
[2] 陈晓晶,刘景辉,杨彦明,赵洲,徐忠山,海霞,韩宇婷. 盐胁迫对燕麦叶片生理指标和差异蛋白组学的影响[J]. 作物学报, 2019, 45(9): 1431-1439.
[3] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[4] 张春宵,李淑芳,金峰学,刘文平,李万军,刘杰,李晓辉. 用3种方法定位玉米萌发期和苗期的耐盐和耐碱相关性状QTL[J]. 作物学报, 2019, 45(4): 508-521.
[5] 周萍萍,颜红海,彭远英. 基于高通量GBS-SNP标记的栽培燕麦六倍体起源研究[J]. 作物学报, 2019, 45(10): 1604-1612.
[6] 冯福学,慕平,赵桂琴,柴继宽,刘欢,陈国栋. 西北绿洲灌区水氮耦合对燕麦品种陇燕3号耗水特性及产量的影响[J]. 作物学报, 2017, 43(09): 1370-1380.
[7] 冯晓敏, 杨永, 任长忠, 胡跃高, 曾昭海. 豆科-燕麦间作对作物光合特性及籽粒产量的影响[J]. 作物学报, 2015, 41(09): 1426-1434.
[8] 林叶春,曾昭海,任长忠,李志坚,郭来春,杨学超,王春龙,钱欣,胡跃高. 局部根区灌溉对裸燕麦光合特征曲线及叶绿素荧光特性的影响[J]. 作物学报, 2012, 38(06): 1062-1070.
[9] 陈恭, 郭丽梅, 任长忠, 郭来春, 赵国军, 胡跃高, 曾昭海. 行距及间作对箭筈豌豆与燕麦青干草产量和品质的影响[J]. 作物学报, 2011, 37(11): 2066-2074.
[10] 肖鑫辉, 李向华, 刘洋, 张应, 王克晶. 高盐碱胁迫下野生大豆(Glycine soja)体内离子积累的差异[J]. 作物学报, 2011, 37(07): 1289-1300.
[11] 林伟静, 吴广枫, 李春红, 王燕, 周素梅. 品种与环境对我国裸燕麦营养品质的影响[J]. 作物学报, 2011, 37(06): 1087-1092.
[12] 吴斌, 张宗文. 燕麦葡聚糖合酶基因AsCSLH的克隆及特征分析[J]. 作物学报, 2011, 37(04): 723-728.
[13] 张志芬,付晓峰*,刘俊青,杨海顺. 用GGE双标图分析燕麦区域试验品系产量稳定性及试点代表性[J]. 作物学报, 2010, 36(08): 1377-1385.
[14] 任祎,平华,任贵兴. 裸燕麦核心种质的抗氧化特性[J]. 作物学报, 2010, 36(06): 988-994.
[15] 吴娜,赵宝平,曾昭海,任长忠,郭来春,陈昌龙,赵国军,胡跃高. 两种灌溉方式下保水剂用量对裸燕麦产量和品质的影响[J]. 作物学报, 2009, 35(8): 1552-1557.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!