欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (11): 2066-2074.doi: 10.3724/SP.J.1006.2011.02066

• 耕作栽培·生理生化 • 上一篇    下一篇

行距及间作对箭筈豌豆与燕麦青干草产量和品质的影响

陈恭1,郭丽梅1,**,任长忠2,郭来春2,赵国军2,胡跃高1,*,曾昭海1,*   

  1. 1 中国农业大学农学与生物技术学院,北京100193;2 白城市农业科学院,吉林白城137000
  • 收稿日期:2011-03-23 修回日期:2011-06-25 出版日期:2011-11-12 网络出版日期:2011-07-28
  • 通讯作者: 曾昭海, E-mail: zengzhaohai@cau.edu.cn; 胡跃高, E-mail: huyuegao@cau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30871491), 国家燕麦荞麦产业技术体系项目(CARS-08-B-1), 国家公益性行业(农业)科研专项(201103001)和国家“十二五”粮食丰产科技工程项目(2011BAD16B15)资助。

Effects of Two Row Spaces and Intercropping on Forage and Crude Protein Yields of Oat (Avena sativa L.) and Common Vetch (Vicia sativa L.)

CHEN Gong1,GUO Li-Mei1, **,REN Chang-Zhong2,GUO Lai-Chun2,ZHAO Guo-Jun2,HU Yue-Gao1,*,ZENG Zhao-Hai1,*   

  1. 1 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; 2 Baicheng Academy of Agricultural Sciences, Baicheng 137000, China
  • Received:2011-03-23 Revised:2011-06-25 Published:2011-11-12 Published online:2011-07-28
  • Contact: 曾昭海, E-mail: zengzhaohai@cau.edu.cn; 胡跃高, E-mail: huyuegao@cau.edu.cn

摘要: 在我国西北地区,普遍应用燕麦与箭筈豌豆间作生产饲草。为了研究不同间作模式的增产效果,2009—2010年在吉林省白城市采用两因子完全随机区组设计,研究了2种行距(A1:33 cm;A2:16.5 cm)和3种种植方式(B1:燕麦单作;B2:箭筈豌豆单作;B3:燕麦箭筈豌豆1∶1间作)对饲草产量、品质的影响。结果表明,行距减小播量增大时,作物单株重量减小,饲草总产量提高13%;行距减小播量不变,燕麦单株重量增大,饲草总产量提高29%;B3饲草产量比B1提高24%,比B2提高30%;B3粗蛋白产量比B1高1倍,比B2低20%;间作使燕麦的株高、单株重和粗蛋白质含量提高,使箭筈豌豆的株高增加,单株重、含氮量降低,节数减少,分枝减少。采用行距16.5 cm、燕麦播量87.5 kg hm–2、箭筈豌豆播量75 kg hm–2的燕麦与箭筈豌豆间作处理,全年两茬饲草产量为19.8 t hm–2,粗蛋白产量为2.43 t hm–2,可作为白城及气候相似地区饲草生产的基本模式。

关键词: 燕麦, 箭筈豌豆, 间作, 行距, 产量

Abstract: Intercropping of oat (Avena sativa L.) and common vetch (Vicia sativa L.) is a widely used forage production system in Northwestern China. Due to different cropping managements, whether intercropped crops can yield higher than mono-cropped oat was not consistent in previous studies. This experiment was carried out at Baicheng Academy of Agricultural Science in Jilin province in 2009–2010. The quantity and quality of forage yield were justified with mono-cropped oat (B1) and common vetch (B2) as well as their intercropping (B3) under two different row spaces (A1: 33 cm and A2: 16.5 cm). In 2009, seeding rate of each row was the same for A1 and A2, so the total seeding rate for A2 was doubled; in 2010, the total seeding rate was the same for A1 and A2. The results showed that dry matter yields under intercropping system increased by 24% and 30% compared with those under the mono-cropping of oat and common vetch respectively. Crude protein yield in intercropped system was much higher (100%) than that in mono-cropped oat, but 20% less than that in mono-cropped vetch. A2 produced 13% and 29% more forage yield in 2009 and 2010 than A1. The effects of row spaces were less noticed in crude protein yield.With 16.5 cm of row spaces, oat seeding rate at 87.5 kg ha–1 and common vetch seeding rate at 75 kg ha–1, highest forage yield of 19.8 t ha–1 and crude protein yield of 2.43 t ha–1 were achieved with LER 1.55. Intercropping of oat and vetch could be a promising intercropping system in the studied area and the mentioned seeding rate and row space would be the best combination for forage production.

Key words: Oat, Common vetch, Intercropping, Row space, Yield

[1]Duke J A. Handbook of Legumes of World Economic Importance. New York: Plenum Press, 1981. pp 122?130
[2]Zhou Q-P(周青平). Forage structure and yield of oat and common vetch mixed cropping system. Grassland & Turf (草原与草坪), 2002, (3): 43?45 (in Chinese)
[3]Zhao C-X(赵彩霞), He W-Q(何文清), Hu Y-G(胡跃高), Dong H-M(董慧明), She X-L(佘小玲). Effect of intercropping or mixture and harvest time on forage yield and quality of oat and pea under low soil nitrogen environment. Agric Res Arid Area (干旱地区农业研究), 2006, 24(5): 5?9 (in Chinese with English abstract)
[4]Cao Z-H(曹仲华), Wei J(魏军), Yang F-Y(杨富裕), Cao S-H(曹社会). Effects of the common vetch-oat mixture in the Shannan Region of Tibet. Acta Agric Boreali-occident Sin (西北农业学报), 2007, 16(5): 67?71 (in Chinese with English abstract)
[5]Sun A-H(孙爱华), Lu H-P(鲁鸿佩), Ma S-H(马绍慧). Experimental study of vetch + oat mixture system in highland region. Pratac Sci (草业科学), 2003, 20(8): 37?38 (in Chinese with English abstract)
[6]Wang X(王旭), Zeng Z-H(曾昭海), Zhu B(朱波), Hu Y-G(胡跃高). Effect of different intercropping and mixture modes on  forage yield and quality of oat and common vetch. Acta Agron Sin (作物学报), 2007, 33(11): 1892?1895 (in Chinese with English abstract)
[7]Ji W-Z(姬万忠). The study on improving yield effect for mix-sowing of oat and vetch on alpine artificial grassland in Tianzhu county in Gansu province. Chin J Grassland (中国草地学报), 2008, 30(5): 106?109 (in Chinese with English abstract)
[8]Chen G(陈功), He L-F(贺兰芳). Study on physiological and ecological characteristics of oat + vetch mixed artificial grassland. Grassland & Turf (草原与草坪), 2005, (4): 47?50 (in Chinese with English abstract)
[9]Bao C-L(包成兰), Zhang S-C(张世财). Trial report of mixture oat and Vicia sativa in Datong county. Qinghai Pratac (青海草业), 2002, 11(1): 5?6 (in Chinese with English abstract)
[10]Assefa G, Ledin I. Effect of variety, soil type and fertilizer on the establishment, growth, forage yield, quality and voluntary intake by cattle of oats and vetches cultivated in pure stands and mixtures. Anim Feed Sci Technol, 2001, 92: 95?111
[11]Dhima K V, Lithourgidis A S, Vasilakoglou I B, Doras C A. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Res, 2007, 100: 249?256
[12]Vasilakoglou I, Dhima K, Lithourgidis A, Eleftherohorinos I. Competitive ability of winter cereal-common vetch intercrops against sterile oat. Exp Agric, 2008, 44: 509?520
[13]Ma C-H(马春晖), Han J-G(韩建国), Zhang L(张玲). Dynamic study on competitive interaction between two annual forage crops in high-cold pasturing area. Pratac Sci (草业科学), 2001, 18(1): 22?24 (in Chinese with English abstract)
[14]Caballero R, Goicoechea E L, Hernaiz P J. Forage yields and quality of common vetch and oat sown at varying seeding ratios and seeding rates of vetch. Field Crops Res, 1995, 41: 135?140
[15]Mason W K, Pritchard K E. Intercropping in a temperate environment for irrigated fodder production. Field Crops Res, 1987, 16: 243?253
[16]GB/T 5511-2008. Cereals and Pulses—Determination of the Nitrogen Content and Calculation of the Crude Protein Content—Kjeldahl Method (谷物和豆类氮含量测定和粗蛋白质含量计算——凯氏法). Beijing: Standard Press of China, 2008 (in Chinese)
[17]SAS Institute SAS/STAT User’s Guide. Version 8.2. SAS Institute, Cary, North Carolina, 2001
[18]Darrell A M. Forage Crops. New York: McGraw-Hill, 1984. pp 241?245
[19]Neumann A, Schmidtke K, Rauber R. Effects of crop density and tillage system on grain yield and N uptake from soil and atmosphere of sole and intercropped pea and oat. Field Crops Res, 2007, 100: 285?293
[20]Andersen M K, Hauggaard-Nielsen H, Ambus P, Jensen E S. Biomass production, symbiotic nitrogen fixation and inorganic N use in dual and tri-component annual intercrops. Plant Soil, 2005, 266: 273?287
[21]Wang X(王旭), Zeng Z-H(曾昭海), Hu Y-G(胡跃高), Chen Z-G(陈宗光), Zhu B(朱波), Lin Y-C(林叶春). Effect of oat intercropped with common vetch on aftercrop yield. Acta Agrest Sin (草地学报), 2009, 17: 63?67 (in Chinese with English abstract)
[22]Bedoussac L, Justes E. Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat-winter pea intercrop. Plant Soil, 2010, 330: 37?54
[23]Jensen E S. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil, 1996, 182: 25?38
[24]Mariotti M, Masoni A, Ercoli L, Arduini I. Above- and below-ground competition between barley, wheat, lupin and vetch in a cereal and legume intercropping system. Grass Forage Sci, 2009, 64: 401?412
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!