欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (05): 798-804.doi: 10.3724/SP.J.1006.2014.00798

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦品种汶农14抗白粉病基因的染色体定位

宋伟1,2,**,孙会改1,2,**,孙艳玲2,赵紫慧1,2,王晓鸣2,武小菲2,李洪杰2,*   

  1. 1 河北科技师范学院生命科技学院, 河北秦皇岛066604; 2 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程, 北京100081
  • 收稿日期:2013-12-31 修回日期:2014-03-04 出版日期:2014-05-12 网络出版日期:2014-03-24
  • 通讯作者: 李洪杰, E-mail: lihongjie@caas.cn
  • 基金资助:

    本研究由国家现代农业产业体系建设专项(CARS-3-1)和国家转基因生物新品种培育重大专项(2014ZX0800906B-003)资助。

Wheat|Blumeria graminis f. sp. tritici|Resistance gene|Pm2|Molecular marker

SONG Wei1,2,SUN Hui-Gai1,2,SUN Yan-Ling2,ZHAO Zi-Hui1,2,WANG Xiao-Ming2,WU Xiao-Fei2,LI Hong-Jie2,*   

  1. 1 College of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; 2 National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2013-12-31 Revised:2014-03-04 Published:2014-05-12 Published online:2014-03-24

摘要:

汶农14是近年山东省和国家审定一个半冬性小麦品种。采用来自不同地区的52个小麦白粉菌菌株对汶农14进行抗性鉴定,并利用分子标记分析定位了其抗白粉病基因。汶农1443个菌株(82.7%)表现抗性反应型,对9个菌株表现感病反应型。这些菌株对汶农14的毒力谱与已知抗白粉病基因Pm2相似,但汶农1411个菌株的反应与携带Pm2Ulka/8*Cc不同。此外,利用26个菌株的鉴定结果表明,汶农14与携带Pm46Tabasco相比,与3个菌株的反应型表现不同。汶农14在成株期对白粉病混合菌株表现高抗。利用汶农14×4564F2F2:3群体进行遗传分析,发现汶农14E09菌株的抗性受1对显性基因控制,暂命名为PmW14。分子标记分析显示,PmW14Xcfd8Xcfd81SCAR203连锁,遗传距离分别为7.51.87.7 cM。由于这些分子标记被定位于小麦5DS染色体的5DS-1-0-0.63区间,且与Pm2基因紧密连锁,因此推测,PmW14可能与Pm2位于相同的基因座。

关键词: 小麦, 白粉菌, 抗病基因, Pm2, 分子标记

Abstract:

Wennong 14 is a facultative wheat cultivar commercialized in Shandong province and the neighbouring provinces in the northern part of Yellow and Huai River Valleys Facultative Wheat Zone in China. In this study, an array of Blumeria graminis f. sp. tritici (Bgt) isolates were used to test the resistance of Wennong 14 to powdery mildew at both seedling and adult stages. Among the 52 Bgt isolates tested at seedling stage, Wennong 14 was resistant to 43 and susceptible to 9 isolates. The virulence pattern of these Bgt isoaltes on Wennong 14 was similar as that of the known powdery mildew resistance gene Pm2, but the reactions of Wennong 14 to 11 Bgt isolates differed from those of Ulka/8*Cc carrying Pm2. Additionally, Wennong 14 was different from Tabasco carrying Pm46 in the reaction to three isoaltes when tested with 26 Bgt isolates. Wennong 14 was highly resistant to a mixture of Bgt isolates at adult stage. Using segregation populations of F2 and F2:3 developed from the cross of Wennong 14 × Han 4564, genetic analysis demonstrated that the resistance against Bgt isolate E09 was controlled by a single dominant gene, designated PmW14. Based on the results of molecular analysis, PmW14 was linked to markers Xcfd8, Xcfd81, and SCAR203, with genetic distances of 7.5, 1.8, and 7.7 cM, respectively. Because these markers were previously localized on wheat chromosome 5DS in the negion of 5DS-1-0-0.63 and linked to gene Pm2, PmW14 was most likely located on this locus and to be either the same as or an allele of Pm2.

Key words: Wheat, Blumeria graminis f. sp. tritici, Resistance gene, Pm2, Molecular marker

[1]Cowger C, Miranda L, Griffey C, Hall M, Murphy JP, Maxwell J. Wheat powdery mildew. In: Sharma I ed. Disease resistance in wheat. CABI, Oxfordshire, 2012. pp 84–119



[2]Everts K L, Leath S, Finney P L. Impact of powdery mildew on milling and baking quality of soft red winter wheat. Plant Dis, 2001, 85: 423–429



[3]Conner R L, Kuzyk A D, Su H. Impact of powdery mildew on the yield of soft white spring wheat cultivars. Can J Plant Sci, 2003, 83: 725–728.



[4]庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003



Zhuang Q S. Wheat Improvement and Pedigree Analysis in China. Beijing: China Agriculture Press, 2003 (in Chinese)



[5]周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 高永超, 井赵斌, 于广军. 1BL/1RS易位系在我国小麦育种中的应用. 作物学报, 2004, 30: 531–535



Zhou Y, He Z H, Zhang G S, Xia L Q, Chen X M, GaoY C, Jing Z B, Yu G J. Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin, 2004, 30: 531–535 (in Chinese with English abstract)



[6]李洪杰, 王晓鸣, 宋凤景, 伍翠平, 武小菲, 张宁, 周阳, 张学勇. 中国小麦品种对白粉病的抗性反应与抗病基因检测. 作物学报, 2011, 37: 943–954



Li H J, Wang X M, Song F J, Wu C P, Wu X F, Zhang N, Zhou Y, Zhang X Y. Response to powdery mildew and detection of resistance genes in wheat cultivars from China. Acta Agron Sin, 2011, 37: 943–954 (in Chinese with English abstract)



[7]魏松红, 曹远银, 牟连晓. 东北春麦区小麦白粉菌生理小种鉴定及毒性基因分析. 植物保护学报, 2006, 33: 333–334



Wei S H, Cao Y Y, Mou L X. Race identification and virulent gene analysis of Blumeria graminis (DC.) Speer f. sp. tritici in northeastern spring wheat zone in China during the period of 1999–2002. Acta Phytophyl Sin, 2006, 33: 333–334 (in Chinese with English abstract)



[8]王俊美, 王飞, 宋玉立, 康振生, 刘红彦. 小麦已知抗白粉病基因在河南的抗性评价及Pm2基因的标记追踪. 麦类作物学报, 2009, 29: 535–539



Wang J M, Wang F, Song Y L, Kang Z S, Liu H Y. Evaluation of the known Wheat powdery mildew resistance genes in Henan Province and marker tracing of Pm2 gene. J Triticeae Crops, 2009, 29: 535–539 (in Chinese with English abstract)



[9]杨立军, 向礼波, 曾凡松, 汪华, 史文琦, 喻大昭. 湖北麦区小麦白粉病菌毒性结构分析. 植物保护, 2009, 35(5): 76–79



Yang L J, Xiang L B, Zeng F S, Wang H, Shi W Q, Yu D Z. Virulence gene structure analysis of Blumeria graminis f. sp. tritici in Hubei. Plant Prot, 2009, 35(5): 76–79 (in Chinese with English abstract)



[10]Pugsley A T, Carter M V. The resistance of twelve variety of Triticum vulgare to Erysiphe graminis tritici. Aust J Biol Sci, 6: 335–346



[11]McIntosh R A, Baker E P. Cytogenetical studies in wheat: IV. Chromosome location and linkage studies involving the Pm2 locus for powdery mildew resistance. Euphytica, 1970, 19: 71–77



[12]周益林, 段霞瑜, 陈刚, 盛宝钦, 张莹. 40个小麦优良品种资源的抗白粉病基因推导. 植物病理学报, 2002, 32: 301–305



Zhou Y L, Duan X Y, Chen G, Sheng B Q, Zhang Y. Analyses of resistance genes of 40 wheat cultivars or lines to wheat powdery mildew. Acta Phytopathol Sin, 2002, 32: 301–305 (in Chinese with English abstract)



[13]曹学仁, 周益林, 段霞瑜, 宋玉立, 何文兰, 丁克坚, 王保通, 夏先春. 我国主要麦区101个小麦品种(系)的抗白粉病基因推导. 麦类作物学报, 2010, 30: 948–953



Cao X R, Zhou Y L, Duan X Y, Song Y L, He W L, Ding K J, Wang B T, Xia X C. Postulation of wheat powdery mildew resistance genes in 101 wheat cultivars (lines) from major wheat regions in China. J Triticeae Crops, 2010, 30: 948–953 (in Chinese with English abstract)



[14]刘兵, 李绍慧, 王永强, 胡东维. 我国主要小麦推广品种抗白粉病基因的分子检测. 植物保护学报, 2010, 37: 113–117



Liu B, Li S H, Wang Y Q, Hu D W. Molecular detection of powdery mildew resistance genes in the commercial wheat cultivars in China. Acta Phytophyl Sin, 2010, 37: 113–117 (in Chinese with English abstract)



[15]武英鹏, 原宗英, 李颖, 石保明. 小麦白粉病抗性基因在山西省的有效性评价. 麦类作物学报, 2009, 29: 1105–1109



Wu Y P, Yuan Z Y, Li Y, Shi B M. Study on the validity of resistant genes for wheat powdery mildew in Shanxi. J Triticeae Crops, 2009, 29: 1105–1109 (in Chinese with English abstract)



[16]史亚千, 王保通, 李强, 吴兴元, 王芳, 刘恒, 田月娥, 刘倩茹. 陕西省小麦白粉菌毒性结构及主栽小麦品种抗性基因的初步分析. 麦类作物学报, 2009, 29: 706–711



Shi Y Q, Wang B T, Li Q, Wu X Y, Wang F, Liu H, Tian Y E, Liu Q R. Analysis on the virulent genes of Erysiphe graminis f. sp. tritici and the resistance genes of wheat commercial cultivars in Shaanxi Province. J Triticeae Crops, 2009, 29: 706–711 (in Chinese with English abstract)



[17]Gao H D, Zhu F F, Jiang Y J, Wu J Z, Yan W, Zhang Q F, Jacobi A, Cai S B. Genetic analysis and molecular mapping of a new powdery mildew resistance gene Pm46 in common wheat. Theor Appl Genet, 2012, 125: 967–973



[18]赵紫慧, 黄江, 陆鸣, 王晓鸣, 吴龙飞, 武小菲, 赵鑫, 李洪杰. 山东省和河北省小麦白粉菌毒性与遗传多样性分析. 作物学报, 2013, 39: 1377–1385



Zhao Z H, Huang J, Lu M, Wang X M, Wu L F, Wu X F, Zhao X, Li H J. Virulence and genetic diversity of Blumeria graminis f. sp. tritici collected from Shandong and Hebei provinces. Acta Agron Sin, 2013, 39: 1377–1385 (in Chinese with English abstract)



[19]王龙, 王生荣, 甘丽萍. 甘肃中西部春小麦白粉菌群体毒性分析. 西北农业学报, 2005, 14(1): 106–110



Wang L, Wang S R, Gan L P. Group virulence study of Blumeria graminis f. sp. tritici in the middle west of Gansu province. Acta Agric Boreali-Occident Sin, 2005, 14(1): 106–110 (in Chinese with English abstract)



[20]迟文娟, 曹远银, 朱桂清, 张晓蕾. 2004–2005年北方部分麦区白粉病菌小种动态及流行相关区品种抗性分析. 植物保护学报, 2007, 34: 567–572



Chi W J, Cao Y Y, Zhu G Q, Zhang X L. Analysis on 2004–2005 racial virulence of Blumeria graminis f. sp. tritici in northern China and the resistance in wheat cultivars in the disease epidemic related zones. Acta Phytophyl Sin, 2007, 34: 567–572 (in Chinese with English abstract)



[21]孙凯, 刘楠, 张现社. 高产优质多抗小麦新品种汶农14号. 中国种业, 2011, (10): 47



Sun K, Liu N, Zhang X S. Wennong 14: New wheat cultivar with high yielding, good quality, and multiple resistances. China Seed Ind, 2011, (10): 47 (in Chinese)



[22]陈艳玲, 孙凯. 小麦新品种汶农14. 中国种业, 2012, (3): 61



Chen Y L, Sun K. New wheat cultivar Wennong 14. China Seed Ind, 2012, (3): 61 (in Chinese)



[23]宋凤景, 肖明纲, 黄江, 王晓鸣, 朱振东, 武小菲, 李洪杰. 12个小麦品种(系)白粉病抗性的遗传分析. 作物学报, 2012, 38: 1339–1345



Song F J, Xiao M G, Huang J, Wang X M, Zhu Z D, Wu X F, Li H J. Inheritance of resistance to powdery mildew in 12 wheat varieties (lines). Acta Agron Sin, 2012, 38: 1339–1345 (in Chinese with English abstract)



[24]Briggle L W. Near-isogenic lines of wheat with genes for resistance to Erysiphe graminis f. sp. tritici. Crop Sci, 1969, 9: 70–72



[25]Zhao Z H, Sun H G, Song W, Lu M, Jiang H, Wu L F, Wang X M, Li H J. Genetic analysis and detection of the gene MlLX99 on chromosome 2BL conferring resistance to powdery mildew in the wheat cultivar Liangxing 99. 2013, 126: 3081–3089



[26]Xiao M G, Song F J, Jiao J F, Wang X M, Xu H X, Li H J. Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet, 2013, 126: 1397–1403



[27]司权民, 张新心, 段霞渝, 盛宝钦. 小麦白粉病菌生理小种鉴定. 中国农业科学, 1987, 20(5): 64–70



Si Q M, Zhang X X, Duan X Y. 1987. Identification of isolates of Blumeria graminis f. sp. tritici. Sci Agric Sin, 1987, 20(5): 64–70 (in Chinese with English abstract)



[28]Saari E E, Prescott J M. A scale for appraising the foliar intensity of wheat diseases. Plant Dis Rep, 1975, 59: 377–381



[29]Qiu Y C, Sun X L, Zhou R H, Kong X Y, Zhang S S, Jia J Z. Identification of microsatellite markers linked to powdery mildew resistance gene Pm2 in wheat. Cereal Res Commun, 2006, 34: 1267–1273



[30]王黎明, 朱玉丽, 李兴锋, 王洪刚. 小麦抗白粉病基因Pm2的SSR标记筛选. 植物保护学报, 2011, 38: 216–220



Wang L M, Zhu Y L, Li X F, Wang H G. Screening for SSR markers linked to wheat powdery mildew resistance gene Pm2. Acta Phytophylactica Sin, 2011, 38: 216–220 (in Chinese with English abstract)



[31]李根桥, 房体麟, 朱婕, 高亮亮, 李闪, 谢超杰, 杨作民, 孙启信, 刘志勇. 普通小麦品种Brock抗白粉病基因分子标记定位. 作物学报, 2009, 35: 1613–1619



Li G Q, Fang T L, Zhu J, Gao L L, Li S, Xie C J, Yang Z M, Sun Q X, Liu Z Y. Molecular identification of a powdery mildew resistance gene from common wheat cultivar Brock. Acta Agron Sin, 2009, 35: 1613–1619 (in Chinese with English abstract)



[32]Ma H Q, Kong Z X, Fu B S, Li N, Zhang L X, Jia H Y, Ma Z Q. Identification and mapping of a new powdery mildew resistance gene on chromosome 6D of common wheat. Theor Appl Genet, 2011, 123: 1099–1106



[33]Lincoln S E, Daly M J, Lander E S. Constructing linkage maps with MAPMAKER/Exp version 3.0. A Tutorial Reference Manual, 3rd Edn. Whitehead Institute for Medical Research, Cambridge. 1993



[34]Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172–175



[35]Huang J, Zhao Z H, Song F J, Wang X M, Xu H X, Huang Y, An D G, Li H J. Molecular detection of a gene effective against powdery mildew in the wheat cultivar Liangxing 66. Mol Breed, 2012, 30: 1737–1745

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!