作物学报 ›› 2014, Vol. 40 ›› Issue (05): 908-914.doi: 10.3724/SP.J.1006.2014.00908
杨长琴1,2,刘瑞显2,张国伟2,徐立华2,周治国1,*
YANG Chang-Qin1,2,LIU Rui-Xian2,ZHANG Guo-Wei2,XU Li-Hua2,ZHOU Zhi-Guo1,*
摘要:
试验以新棉33B为材料,于2007年和2009年在江苏南京(32º02′N,118º50′E)江苏省农业科学院防雨棚的水泥池中进行。以正常灌水(土壤相对含水量为75%±5%)为对照,于棉花中部(6~8)果枝开花时进行渍水7 d和14 d (保持地面2~3 cm的水层)处理。研究花铃期渍水对棉铃对位叶蔗糖代谢及铃重形成的影响。结果表明,花铃期渍水条件下棉铃对位叶可溶性糖、蔗糖、淀粉含量增加,蔗糖/淀粉比值下降,且随渍水持续期的延长变化幅度增大,表明花铃期渍水致使叶片蔗糖外运受阻且随渍水时间的延长外运受阻加重;棉铃对位叶蔗糖磷酸合酶、蔗糖合酶和酸性转化酶活性增强,且随渍水持续期的延长和果枝部位的上升而增大;棉铃对位叶可溶性糖、蔗糖和淀粉含量与蔗糖磷酸合酶、蔗糖合酶及酸性转化酶活性显著正相关(P<0.05),表明渍水条件下蔗糖代谢被激活但并未促进叶片蔗糖的外运,铃重随果枝部位上升和渍水持续期的延长下降幅度增大。这是渍水条件下铃重下降的重要原因。
[1]Bange M P, Milroy S P, Thongbai P. Growth and yield of cotton in response to waterlogging. Field Crops Res, 2004, 88: 129–142[2]郭文琦, 赵新华, 陈兵林, 刘瑞显, 周治国. 氮素对花铃期短期渍水棉花根系生长的影响. 作物学报, 2009, 35: 1078–1085Guo W Q, Zhao X H, Chen B L, Liu R X, Zhou Z G. Effects of nitrogen on cotton (Gossypium hirsutum L.) root growth under short-term waterlogging during flowering and boll-forming stage. Acta Agron Sin, 2009, 35: 1078–1085 (in Chinese with English abstract)[3]郭文琦, 张思平, 陈兵林, 周治国. 水分和氮肥运筹对棉花花后生物量和养分累积及氮素利用率的影响. 西北植物学报, 2008, 28: 2270–2277Guo W Q, Zhang S P, Chen B L, Zhou Z G. Effects of different water and nitrogen application on biomass and nutrients accumulation and nitrogen fertilization recovery rate of Cotton after anthesis. Acta Bot Borea-Occident Sin, 2008, 28: 2270–2277 (in Chinese with English abstract)[4]施美芬, 曾波, 申建红, 类淑桐, 朱智, 刘建辉. 植物水淹适应与碳水化合物的相关性. 植物生态学报, 2010, 34: 855–866Shi M F, Zeng B, Shen J H, Lei S T, Zhu Z, Liu J H. A review of the correlation of flooding adaptability and carbohydrates in plants. Chin J Plant Ecol, 2010, 34: 855–866 (in Chinese with English abstract)[5]Koch K E. Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physoil Mol Biol, 1996, 47: 509–540 [6]Loewe A, Einig W, Shi L, Dizengremel P, Hampp R. Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytol, 2000, 145: 565–574[7]Malik A, Colmer T D, Lambers H, Setter T L, Schortemeyer M. Short-term waterlogging has long-term effects on the growth and physiology of wheat. New Phytol, 2002, 153: 225–236[8]Chen H J, Qualls R G, Blank R R. Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. Aquat Bot, 2005, 82: 250–268[9]Liao C T, Lin C H. Physiological adaptation of crop plants to flooding stress. Proc Natl Sci Counc Roc (B), 2001, 25: 148–157[10]Singla N K, Jain V, Jain S, Sawhney S K. Activities of glycolytic enzymes in leaves and roots of contrasting cultivars of sorghum during flooding. Biol Plant, 2003, 47: 555–560[11]利容千, 王建波. 植物逆境细胞及生理学. 武汉: 武汉大学出版社, 2002. pp 69–70Li R Q, Wang J B. Plant Stress Cell and Physiology. Wuhan: Wuhan University Press, 2002. pp 69–70 (in Chinese)[12]Chen S, Hajirezaei M, Peisker M, Tschiersch H, Sonnewald U, Börnke F. Decreased sucrose-6-phosphate phosphatase level in transgenic tobacco inhibits photosynthesis, alters carbohydrate partitioning, and reduces growth. Planta, 2005, 221: 479–492[13]Grof C P L, Knight D P, McNeil S D, Lunn J E, Campbell J A. A modified assay method shows leaf sucrose-phosphate synthase activity is correlated with leaf sucrose content across a range of sugarcane varieties. Aust J Plant Physiol, 1998, 25: 499–502[14]李永庚, 于振文, 姜 东, 余松烈. 冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究. 作物学报, 2001, 27: 658–664Li Y G, Yu Z W, Jiang D, Yu S L. Studies on the dynamic changes of the synthesis of sucrose in the flag leaf and starch in the grain and related enzymes of high-yielding wheat. Acta Agron Sin, 2001, 27: 658–664 (in Chinese with English abstract).[15]Geigenberger P, Stitt M. Sucrose synthase catalyses a reversible reaction in vivo in developing potato tubers and other planttissues. Planta, 1993, 189: 329–339[16]Déjardin A, Rochat C, Wuillème S, Boutin J P. Contribution of sucrose synthase, ADP-glucose pyrophosphorylase and starch synthase to starch synthesis in developing pea seeds. Plant Cell Environ, 1997, 20: 1421–1430[17]Praxedes S C. DaMatta F M, Loureiro M E, Ferrão M A G, Cordeiro A T. Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffee canephora Pierre var. kouillou) leaves. Environ Exp Bot, 2006, 56: 263–273[18]Wells R. Response of leaf ontogeny and photosynthetic activity to reproductive growth in cotton. Plant Physiol, 1988, 87: 274–279 [19]张文静, 胡宏标, 陈兵林, 王友华, 李文峰, 周治国. 棉铃对位叶生理特性的基因型差异及其与铃重形成的关系. 棉花学报, 2007, 19: 296–303Zhang W J, Hu H B, Chen B L, Wang Y H, Li W F, Zhou Z G. Relationship between genotypic difference of physiological characteristics in leaf subtending boll and boll weight forming. Cotton Sci, 2007, 19: 296–303 (in Chinese with English abstract) [20]周青, 王友华, 许乃银, 张传喜, 周治国, 陈兵林. 温度对棉铃对位叶生理特性及铃重形成的影响. 西北植物学报, 2009, 29: 518–527Zhou Q, Wang Y H, Xu N Y, Zhang C X, Zhou Z G, Chen B L. Effect of temperature on physiological characteristics in leaf subtending boll and boll weight forming. Acta Bot Boreal-Occident Sin, 2009, 29: 518–527 (in Chinese with English abstract) [21]刘敬然, 孟亚利, 王友华, 陈兵林, 张国伟, 周治国. 外源6-BA和ABA对不同播种期棉花产量和品质及其棉铃对位叶光合产物的影响. 作物学报, 2013, 39: 1078–1088Liu J R, Liu J J, Meng Y L, Wang Y H, Chen B L, Zhang G W, Zhou Z G. Effect of 6-BA and ABA applications on yield, quality and photosynthate contents in the subtending leaf of cotton with different planting dates. Acta Agron Sin, 2013, 39: 1078–1088[22]中国科学院上海植物生理研究所编. 现代植物生理学实验指南. 北京: 科学出版社, 1999. p 127Shanghai Institute of Plant Physiology, Chinese Academy of Sciences. Modern Laboratory Manual of Plant Physiology. Beijing: Science Press, 1999. p 127 (in Chinese)[23]汤章城. 现代植物生理学实验指南. 北京: 科学出版社, 1999. pp 126–128Tang Z C. Modern Laboratory Manual of Plant Physiology. Beijing: Science Press, 1999. pp 126–128 (in Chinese)[24]Huber S C. Biochemical mechanism for regulation of sucrose accumulation in leaves during photosynthesis. Plant Physiol, 1989, 91: 656–662[25]郭文琦, 刘瑞显, 周治国, 陈兵林. 施氮量对花铃期短期渍水棉花叶片气体交换参数和叶绿素荧光参数的影响. 植物营养与肥料学报, 2010, 16: 362–369Guo W Q, Liu R X, Zhou Z G, Chen B L. Effects of nitrogen fertilization on gas exchange and chlorophyll fluorescence parameters of leaf during the flowering and boll-forming stage of cotton under short-term waterlogging. Plant Nutr Fert Sci, 2010, 16: 362–369 (in Chinese with English abstract)[26]Albrecht G, Mustroph A, Fox T C. Sugar and fructan accumulation during metabolic adjustment between respiration and fermentation under low oxygen conditions in wheat roots. Physiol Plant, 2004, 120: 93–105[27]Islam, M A, Macdonald S E. Ecophysiological adaptations of black spruce (Picea mariana) and tamarack (Larix laricina) seedlings to flooding. Trees, 2004,18: 35–42[28]Yang J, Zhang J, Wang Z, Zhu Q. Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling. J Exp Bot, 2001, 52: 2169–2179[29]王维, 张建华, 杨建昌, 朱庆森. 水分胁迫对贪青迟熟水稻茎贮藏碳水化合物代谢及产量的影响. 作物学报, 2004, 30: 196–204Wang W, Zhang J H, Yang J C, Zhu Q S. Effect of water stress on metabolism of stored carbohydrate of stem and yield in rice grown under unfavorable- delayed senescence. Acta Agron Sin, 2004, 30: 196–204 (in Chinese with English abstract)[30]Hirano T, Uchida N, Azuma T, Yasuda T. Relationship between export rate of photoassimilates and activation state of sucrose phosphate synthase in submerged floating rice. Jpn J Crop Sci, 1997, 66: 675–681[31]Harada T, Ishizawa K. Starch degradation and sucrose metabolism during anaerobic growth of pondweed (Potamogeton distinctus A. Benn.) turions. Plant Soil, 2003, 253: 125–135[32]Rosa M, Prado C, Podazza G, Interdonato R, González J A, Hilal M, Prado F E. Soluble sugars-Metabolism, sensing and abiotic stress. Plant Signal Behav, 2009, 4: 388–393[33]王文泉, 张福锁. 高等植物厌氧适应的生理及分子机制. 植物生理学通讯, 2001, 37: 63–70Wang W Q, Zhang F S. The physiological and molecular mechanism of adaptation to anaerobiosis in higher plants. Plant Physio Comm, 2001, 37: 63–70 (in Chinese with English abstract)[34]Hook D D, Brown C L. Root adaptations and relative flood tolerance of five hardwood species. Forensic Sci, 1973, 19: 225–229[35]Stancato G C, Mazzafera P, Buckeridge M S. Effect of a drought period on the mobilization of non-structural carbohydrates, photosynthetic efficiency and water status in an epiphytic orchid. Plant Physiol Biochem, 2001, 39: 1009–1016[36]Crawford R M M, Braendle R. Oxygen deprivation stress in a changing environment. J Exp Bot, 1996, 47: 145–159[37]Schlüter U, Crawford R M M. Long term anoxia tolerance in leaves of Acorus calamus L. and Iris pseudacorus L. J Exp Bot, 2001, 52: 2213–2225 |
[1] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[2] | 曹新川,胡守林,韩秀锋,何良荣,郭伟锋. 海岛棉棉铃阶段性发育与产量品质的关系[J]. 作物学报, 2020, 46(02): 300-306. |
[3] | 胡海燕,刘迪秋,李允静,李阳,涂礼莉*. 一个棉花纤维伸长期优势表达启动子pGhFLA1的克隆与鉴定[J]. 作物学报, 2017, 43(06): 849-854. |
[4] | 武文明,陈洪俭,王世济,魏凤珍,李金才. 氮肥运筹对苗期受渍夏玉米干物质和氮素积累与转运的影响[J]. 作物学报, 2015, 41(08): 1246-1256. |
[5] | 许乃银,李健. 棉花区试中品种多性状选择的理想试验环境鉴别[J]. 作物学报, 2014, 40(11): 1936-1945. |
[6] | 杨长琴,刘瑞显,张国伟,杨富强,周治国. 花铃期渍水对棉纤维糖代谢的影响及其与纤维比强度的关系[J]. 作物学报, 2014, 40(09): 1612-1618. |
[7] | 张艳菲,王晨阳,马冬云,卢红芳,朱云集,谢迎新,郭天财. 花后渍水、高温及其复合胁迫对小麦籽粒蛋白质含量和面粉白度的影响[J]. 作物学报, 2014, 40(06): 1102-1108. |
[8] | 许乃银,李健. 利用GGE双标图划分长江流域棉花纤维品质生态区[J]. 作物学报, 2014, 40(05): 891-898. |
[9] | 刘敬然,刘佳杰,孟亚利,王友华,陈兵林,张国伟,周治国. 外源6-BA和ABA对不同播种期棉花产量和品质及其棉铃对位叶光合产物的影响[J]. 作物学报, 2013, 39(06): 1078-1088. |
[10] | 许乃银,张国伟,李健,周治国. 基于HA-GGE双标图的长江流域棉花区域试验环境评价[J]. 作物学报, 2012, 38(12): 2229-2236. |
[11] | 吴进东,李金才,魏凤珍,张一,武文明. 花后渍水高温交互效应对冬小麦旗叶光合特性及产量的影响[J]. 作物学报, 2012, 38(06): 1071-1079. |
[12] | 孙啸震,张黎妮,戴艳娇,贺新颖,周治国,王友华. 花铃期增温对棉花干物重累积的影响及其生理机制[J]. 作物学报, 2012, 38(04): 683-690. |
[13] | 于莎, 王友华, 周治国, 吕丰娟, 刘敬然, 马伊娜, 陈吉. 花铃期遮阴对棉花氮素代谢的影响及其机制研究[J]. 作物学报, 2011, 37(10): 1879-1887. |
[14] | 宋丰萍,胡立勇,周广生,吴江生,傅廷栋. 渍水时间对油菜生长及产量的影响[J]. 作物学报, 2010, 36(1): 170-176. |
[15] | 陈源,王永慧,肖健,栾娜,张祥,陈德华. 高品质陆地棉棉铃发育特点[J]. 作物学报, 2010, 36(08): 1371-1376. |
|