欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (06): 1071-1079.doi: 10.3724/SP.J.1006.2012.01071

• 耕作栽培·生理生化 • 上一篇    下一篇

花后渍水高温交互效应对冬小麦旗叶光合特性及产量的影响

吴进东1,2,李金才1,*,魏凤珍1,张一1,武文明1   

  1. 1安徽农业大学农学院, 安徽合肥230036; 2皖西学院, 安徽六安237012
  • 收稿日期:2011-10-31 修回日期:2012-02-22 出版日期:2012-06-12 网络出版日期:2012-03-29
  • 通讯作者: 李金才, E-mail: ljc5122423@126.com
  • 基金资助:

    本研究由国家自然科学基金项目(31071356)和安徽省教育厅自然科学基金重点项目(KJ2011A271)资助。

Effect of Interaction of Waterlogging and High Temperature after Anthesis on Photosynthetic Characteristics of Flag Leaf and Yield in Winter Wheat

WU Jin-Dong1,2,LI Jin-Cai1,*,WEI Feng-Zhen1,ZHANG Yi1,WU Wen-Ming1   

  1. 1 Agricultural College, Anhui Agricultural University, Hefei 230036, China; 2 West Anhui University, Lü’an 237012, China
  • Received:2011-10-31 Revised:2012-02-22 Published:2012-06-12 Published online:2012-03-29
  • Contact: 李金才, E-mail: ljc5122423@126.com

摘要: 渍水和高温是长江中下游麦区冬小麦(Triticum aestivum L.)生育中后期的主要气象灾害因子。2009—2011年连续2个生长季盆栽烟农19,在籽粒形成期(花后5~8 d)和乳熟期(花后15~18 d)分别设渍水(土表水层1 cm)、高温[昼(35±2)℃/夜(25±2)℃]和渍水+高温处理,探讨了渍水和高温双重胁迫对小麦开花后光合特性及产量的影响。结果表明,花后渍水、高温、渍水+高温逆境均显著降低旗叶净光合速率(Pn)、叶绿素含量(SPAD值)和气孔导度(Gs)和蒸腾速率(Tr),增加胞间CO2浓度(Ci);同时降低穗粒数、千粒重及产量,但对成穗数影响不显著。渍水和高温胁迫对旗叶光合作用的主要限制因素是非气孔因素。从产量平均相对受害率看,其影响为渍水+高温逆境(37.7%)>渍水逆境(21.1%)>高温逆境(17.6%),而胁迫时期的影响为籽粒形成期(30.8%)>乳熟期(20.1%)。渍水和高温的交互效应显著,且籽粒形成期逆境不良效应显著大于乳熟期。

关键词: 冬小麦, 渍水, 高温, 渍水高温交互效应, 光合特性, 产量

Abstract: Waterlogging and high temperature are main stress factors during late growing period of winter wheat (Triticum aestivum L.) in Yangtze Valley region of China. To understand the effect of interaction of waterlogging and high temperature on photosynthetic characteristics and grain yield of wheat, we carried out a pot experiment, using the variety of Yannong 19, in continuous growing seasons from 2009 to 2011. At grain-forming (5–8 d after anthesis) and milking (15–18 d after anthesis) stages, waterlogging (1 cm of surface water layer), high temperature (35±2°C of daytime/25±2°C of nighttime), and waterlogging + high temperature stresses were imposed to wheat plants, separately. Waterlogging, high temperature, and both stresses showed significantly effects on photosynthetic characteristics of flag leaf and yield reducing photosynthetic rate (Pn), chlorophyll content (SPAD reading), stomatal conductance (Gs), and transpiration rate (Tr); enhancing intercellular CO2 concentration (Ci); and declining grain number per spike, 1000-grain weight, and grain yield. However, in the case, spike number per pot was not affected significantly. Thus, the effects of waterlogging and high temperature on Pn did not result from stomata factor of flag leaf. The average relative injury rates (RIR) of yield were 37.7% for waterlogging + high temperature treatment, 21.1% for waterlogging treatment, and 17.6% for high temperature treatment. Stress showed higher RIR at grain forming stage (30.8%) than at milking stage (20.1%). There was significant interaction between waterlogging and high temperature, and grain-forming stage was more sensitive to the interaction than milking stage.

Key words: Winter wheat, Waterlogging, High temperature, Interaction, Photosynthetic characteristics, Grain yield

[1]Mitra R, Bhatia C R. Bioenergetic cost of heat tolerance in wheat crop. Curr Sci, 2008, 94: 1049–1053

[2]Irfan M, Hayat S, Hayat Q, Afroz S, Ahmad A. Physiological and biochemical changes in plants under waterlogging. Protoplasma, 2010, 241: 3–17

[3]Tan W, Liu J, Dai T, Jing Q, Cao W, Jiang D. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis waterlogging. Photosynthetica, 2008, 46: 21–27

[4]Kumutha D, Ezhilmathi K, Sairam R K, Srivastava G C, Deshmukh P S, Meena R C. Waterlogging induced oxidative stress and antioxidant activity in pigeonpea genotypes. Biol Plant, 2009, 53: 75–84

[5]Sharma P K, Sharma S K, Choi I Y. Individual and combined effects of waterlogging and alkalinity on yield of wheat (Triticum aestivum L.) imposed at three critical stages. Physiol Mol Biol Plants, 2010, 16: 317–320

[6]Li J-C(李金才), Wei F-Z(魏凤珍), Wang C-Y(王成雨), Yin J(尹钧). Effects of waterlogging on senescence of root system at booting stage in winter wheat. Acta Agron Sin (作物学报), 2006, 32(9): 1355–1360 (in Chinese with English abstract)

[7]Wardlaw I F, Wrigley C W. Heat tolerance in temperate cereals: an overview. Aust J Plant Physiol, 1994, 21: 185–187

[8]Almeselmani M, Deshmukh P S, Sairam R K, Kushwaha S R, Singh T P. Protective role of antioxidant enzymes under heat stress. Plant Sci, 2006, 171: 382–388

[9]Shah N H, Paulsen G M. Interaction of drought and heat on photosynthesis and grain-filling of wheat. Plant & Soil, 2003, 257: 219–226 

[10]Khanna-Chopra R, Viswanathan C. Evaluation of heat stress tolerance in irrigated environment of T. aestivum and related species: I. Stability in yield and yield components. Euphytica, 1999, 106: 169–180

[11]Allakhverdiev S I, Kreslavski V D, Klimov V V, Los D A, Carpentier R, Mohanty P. Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res, 2008, 98: 541–550

[12]Feng C-N(封超年), Guo W-S(郭文善), Shi J-S(施劲松), Peng Y-X(彭永欣), Zhu X-K(朱新开). Effect of heat after anthesis on endosperm cell development and grain weight in wheat. Acta Agron Sin (作物学报), 2000, 26(4): 398–405 (in Chinese with English abstract)

[13]Wrigley C W, Blumenthal C S, Gras P W, Barlow E W R. Temperature variation during grain filling and changes in wheat grain quality. Aust J Plant Physiol, 1994, 21: 875–885

[14]Li Y-G(李永庚), Yu Z-W(于振文), Zhang X-J(张秀杰), Gao L-M(高雷明). Response of yields and quality of wheat to heat stress at different grain filling stages. Acta Phytoecol Sin (植物生态学报), 2005, 29(3): 461–466 (in Chinese with English abstract)

[15]Brisson N, Rebiere B, Zimmer D, Renault P. Response of the root system of a winter wheat crop to waterlogging. Plant & Soil, 2002, 243: 43–55

[16]Li J-C(李金才), Dong Q(董琦), Yu S-L(余松烈). Effect of waterlogging at different growth stages on photosynthesis and yield of different wheat cultivars. Acta Agron Sin (作物学报), 2001, 27(4): 434–441 (in Chinese with English abstract)

[17]Chauhan S, Srivalli S, Nautiyal A R, Khanna-Chopra R. Wheat cultivars differing in heat tolerance show a differential response to monocarpic senescence under high-temperature stress and the involvement of serine proteases. Photosynthetica, 2009, 47: 536–547

[18]Dias A S, Lidon F C. Evaluation of grain filling rate and duration in bread and durum wheat under heat stress after anthesis. J Agron Crop Sci, 2009, 195: 137–147

[19]Munns R. Prophylactively parking sodium in the plant. New Phytol, 2007, 176: 501–504

[20]Salvucci M E, Crafts-Brandner S J. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant, 2004, 120: 179–186

[21]Liao C T, Lin C H. Physiological adaptation of crop plants to flooding stress. Proc Natl Sci Counc ROC (B), 2001, 25: 148–157

[22]Zhao H, Dai T B, Jing Q, Jiang D, Cao W X. Leaf senescence and grain filling affected by post-anthesis heats in two different wheat cultivars. Plant Growth Regul, 2007, 51: 149–158

[23]Vartapetian B, Jackson M. Plant adaptation to anaerobic stress. Ann Bot, 1997, 79: 3–20
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!