作物学报 ›› 2012, Vol. 38 ›› Issue (06): 1062-1070.doi: 10.3724/SP.J.1006.2012.01062
林叶春1,曾昭海1,任长忠2,李志坚3,郭来春2,杨学超1,王春龙2,钱欣1,胡跃高1,*
LIN Ye-Chun1,ZENG Zhao-Hai1,REN Chang-Zhong2,LI Zhi-Jian3,GUO Lai-Chun2,YANG Xue-Chao1,WANG Chun-Long2,QIAN Xin1,HU Yue-Gao1,*
摘要: 为探讨局部根区不同灌溉方式下裸燕麦(Avena nuda L.)光合能力下降的生理机制,采用盆栽及渗水盘供水方法,比较了交替根区灌溉(APRI)、固定根区灌溉(FPRI)和常规灌溉(CTRI)下,裸燕麦旗叶相对叶绿素含量(SPAD值)、光合特征曲线及叶绿素荧光动力学特性的差异。与CTRI处理相比,局部根区灌溉(包括APRI和FPRI处理)降低了叶片SPAD值、净光合速率(Pn)和初始羧化速率(CE),但APRI处理未明显降低初始量子效率(α)、PSII最大量子效率(Fv/Fm)、PSII实际光化学效率(ФPSII)、电子传递效率(ETR)和光化学效率 (qP)。在2种局部根区灌溉模式中,APRI较FPRI显著提高了叶片SPAD值(P<0.05),而且APRI的叶片最大净光合速率(Pmax)、α、光饱和点(LSP)、光能利用率(LUE)、Ci/Ca、CE、CO2饱和点(Ci,sat)、初始荧光(Fo)、最大荧光(Fm)、ФPSII、ETR、qP和非光化学效率(NPQ)均高于FPRI。APRI和FPRI的光合速率降低与气孔因素有关,FPRI光合速率降低还与PSII结构损伤有关;局部根区灌溉提高了裸燕麦干旱胁迫逆境下的耐受能力,APRI有利于保持更高的光合速率。
[1]Rocquigny P J, Entz M H, Gentile R M, Duguid S D. Yield physiology of a semidwarf and tall oat cultivar. Crop Sci, 2004, 44: 2116–2122[2]Zou C-W(邹朝望), Xue X-Z(薛绪掌), Zhang R-D(张仁铎), Geng W(耿伟), Li S(李邵), Chen F(陈菲). Principle and equipment of negative pressure irrigation. Trans CSAE (农业工程学报), 2007, 23(11): 17–22 (in Chinese with English abstract)[3]Kang S-Z(康绍忠), Zhang J-H(张建华), Liang Z-S(梁宗锁), Hu X-T(胡笑涛), Cai H-J(蔡焕杰). The controlled alternative irrigation: a new approach for water saving regulation in farmland. Agric Res Arid Areas (干旱地区农业研究), 1997, 15(1): 1–6 (in Chinese with English abstract)[4]Shi W-J(史文娟), Kang S-Z(康绍忠), Wang Q-J(王全九). Controlled root-split alternate irrigation: a new breakthrough of conventional water-saving irrigation techniques. J Irrig Drainage (灌溉排水学报), 2000, 19(1): 32–35 (in Chinese with English abstract)[5]Sun J-S(孙景生), Kang S-Z(康绍忠), Cai H-J(蔡焕杰), Hu X-T(胡笑涛). Review on research progress of controlled alternate irrigation techniques. Trans CSAE (农业工程学报), 2001, 17(4): 1–5 (in Chinese with English abstract)[6]Du T-S(杜太生), Kang S-Z(康绍忠), Zhang J-H(张建华). Response of cotton growth and water use to different partial root zone irrigation. Sci Agric Sin (中国农业科学), 2007, 40(11): 2546–2555 (in Chinese with English abstract)[7]Tang L S, Li Y, Zhang J H. Physiological and yield responses of cotton under partial rootzone irrigation. Field Crop Res, 2005, 94: 214-223[8]Bai X-L(白向历), Qi H(齐华), He P(何萍), Yu G-R(于贵瑞), Zhang Y-L(张耀兰), Li C(李春), Jin L-L(金路路), Ren Z-P(仁志萍). Effect of water stress on the photosynthetic characteristics of the leaf of oats during its grain-filling stage. Rain Fed Crops (杂粮作物), 2006, 26(1): 25–27 (in Chinese with English abstract)[9]Zhang R-H(张仁和), Xue J-Q(薛吉全), Pu J(浦军), Zhao B(赵兵), Zhang X-H(张兴华), Zhang Y-J(郑友军), Bu L-D(卜令铎). Influence of drought stress on plant growth and photosynthetic traits in maize seedlings. Acta Agron Sin (作物学报), 2011, 37(3): 521–528 (in Chinese with English abstract)[10]Kang H-J(康华靖), Tao Y-L(陶月良), Wang L-X(王立新), Ye Z-P(叶子飘), Li H(李红). Estimation of use efficiency in fixation of CO2 and photorespiration for maize (Zea mays) and sorghum (Sorghum bicolor) under photorespiratory conditions. Acta Agron Sin (作物学报), 2011, 37(11): 2039–2045 (in Chinese with English abstract)[11]Hu W-X(胡文新), Peng S-B(彭少兵), Gao R-F(高荣孚), Ladha J K. Photosynthetic efficiency of a new plant type of rice developed by the international rice research institute. Sci Agric Sin (作物学报), 2005, 38(11): 2205–2210 (in Chinese with English abstract)[12]Prioul J L, Chartier P. Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation: a critical analysis of the methods used. Ann Bot, 1977, 41: 789–800[13]Marshall B, Biscoe P V. A model for C3 leaves describing the dependence of net photosynthesis on irradiance: I. Derivation. J Exp Bot, 1980, 31: 29–39[14]Ye Z-P(叶子飘), Yu Q(于强). Acomparison of response curves of winter wheat photosynthesis to flag leaf intercellular and air CO2 concentrations. Chin J Ecol (生态学杂志), 2009, 28(11): 2233–2238 (in Chinese with English abstract)[15]Hui H X, Xu X, Li Q R. Exogenous betaine improves the photosynthesis of Lycium barbarum under salt stress. Acta Bot Boreal-Occident Sin, 2003, 23: 2137–2422[16]Cai H-X(蔡海霞), Wu F-Z(吴福忠), Yang W-Q(杨万勤). Effects of drought stress on the photosynthesis of Salix paraqplesia and Hippophae rhamnoides seedlings. Acta Ecol Sin (生态学报), 2011, 31(9): 2430–2436 (in Chinese with English abstract)[17]Wang L, Zhang T, Ding S Y. Effect of drought and rewatering on photosynthetic physioecological characteristics of soybean. Acta Ecol Sin, 2006, 26: 2073–2078[18]Zhang Y-Q(张永强), Mao X-S(毛学森), Sun H-Y(孙宏勇), Li W-J(李文杰), Yu H-N(于沪宁). Effects of drought stress on chlorophyll fluorescence of winter wheat. Chin J Eco-agric (中国生态农业学报), 2002, 10(4): 13–15 (in Chinese with English abstract)[19]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Ann Rev Physiol, 1982, 33: 317–345[20]Walting J R, Press M C, Quick W P. Elevated CO2 induces biochemical and ultranstructural changes in leaves of C4 cereal sorghum. Plant Physiol, 2000, 123: 1143–1152[21]Zhang J-H(张建华), Jia W-S(贾文锁), Kang S-Z(康绍忠). Partial rootzone irrigation: its physiological consequences and impact on water use efficiency. Acta Bot Boreali-Occident Sin (西北植物学报), 2001, 21(2): 191–197 (in Chinese with English abstract)[22]Erice G, Louahlia S, Irigoyen J J, Díaz M S, Alami I T, Avice J C. Water use efficiency, transpiration and net CO2 exchange of four alfalfa genotypes submitted to progressive drought and subsequent recovery. Environ Exp Bot, 2011, 72: 123–130[23]Jiao J-Y(焦娟玉), Yin C-Y(尹春英), Chen K(陈珂). Effects of soil water and nitrogen supply on the photosynthetic characteristics of Jatropha curcas seedlings. Chin J Plant Ecol (植物生态学报), 2011, 35(1): 91–99 (in Chinese with English abstract)[24]Jie Y-L(接玉玲), Yang H-Q(杨洪强), Cui M-G(崔明刚), Luo X-S(罗新书). Relationship between soil water content and water use efficiency of apple leaves. Chin J Appl Ecol (应用生态学报), 2001, 12(3): 387–390 (in Chinese with English abstract)[25]Jiang G-M(蒋高明). Plant Physioecology (植物生理生态学). Beijing: Higher Education Press, 2004. pp 24–28 (in Chinese)[26]Ephrath J E. The effects of drought stress on leaf elongation, photosynthesis and transpiration rate in maize leaves. Photosynthetica, 1991, 25: 607–619[27]Li R H, Guo P G, Baum M, Grando S, Ceccarelli S. Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agric Sci China, 2006, 5: 751–757[28]Mishra K B, Iannacone R, Petrozza A, Mishra A, Armentano N, Vecchia G L, Trtílek M, Cellini F, Nedbal L. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Sci, 2012, 182: 79–86 |
[1] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[2] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[3] | 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805. |
[4] | 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258. |
[5] | 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359. |
[6] | 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612. |
[7] | 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786. |
[8] | 周练, 刘朝显, 熊雨涵, 周京, 蔡一林. 质膜内在蛋白ZmPIP1;1参与玉米耐旱性和光合作用的功能分析[J]. 作物学报, 2021, 47(3): 472-480. |
[9] | 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439. |
[10] | 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J]. 作物学报, 2020, 46(7): 1033-1051. |
[11] | 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响[J]. 作物学报, 2020, 46(11): 1760-1770. |
[12] | 侯红乾,林洪鑫,刘秀梅,冀建华,刘益仁,蓝贤瑾,吕真真,周卫军. 长期施肥处理对双季晚稻叶绿素荧光特征及籽粒产量的影响[J]. 作物学报, 2020, 46(02): 280-289. |
[13] | 李旭凯,李任建,张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络[J]. 作物学报, 2019, 45(9): 1349-1364. |
[14] | 袁溢,朱双,方婷婷,蒋金金,王幼平. 人工合成甘蓝型油菜抗旱性及DNA甲基化水平分析[J]. 作物学报, 2019, 45(5): 693-704. |
[15] | 李萍,侯万伟,刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析[J]. 作物学报, 2019, 45(2): 267-275. |
|