欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (06): 1062-1070.doi: 10.3724/SP.J.1006.2012.01062

• 耕作栽培·生理生化 • 上一篇    下一篇

局部根区灌溉对裸燕麦光合特征曲线及叶绿素荧光特性的影响

林叶春1,曾昭海1,任长忠2,李志坚3,郭来春2,杨学超1,王春龙2,钱欣1,胡跃高1,*   

  1. 1中国农业大学农学与生物技术学院, 北京 100193; 2吉林省白城市农业科学院, 吉林白城 137000; 3东北师范大学草地科学研究所, 吉林长春 130024
  • 收稿日期:2011-11-28 修回日期:2012-02-22 出版日期:2012-06-12 网络出版日期:2012-03-29
  • 通讯作者: 胡跃高, E-mail: huyuegao@cau.edu.cn, Tel: 010-62733847
  • 基金资助:

    本研究由中国农业大学“研究生科研创新专项”(KYCX2010031),国家现代农业产业技术体系建设项目(CARS-08-B-1)和国家公益性行业(农业)科研专项(nyhyzx07-009-2)资助。

Effects of Partial Root Zone Irrigation on Leaf Photosynthetic Curves and Chlorophyll Fluorescence Parameters in Naked Oat

LIN Ye-Chun1,ZENG Zhao-Hai1,REN Chang-Zhong2,LI Zhi-Jian3,GUO Lai-Chun2,YANG Xue-Chao1,WANG Chun-Long2,QIAN Xin1,HU Yue-Gao1,*   

  1. 1College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; 2Baicheng Academy of Agricultural Sciences, Baicheng 137000, China; 3Institute of Grassland Science, Northeast Normal University, Changchun 130024, China
  • Received:2011-11-28 Revised:2012-02-22 Published:2012-06-12 Published online:2012-03-29
  • Contact: 胡跃高, E-mail: huyuegao@cau.edu.cn, Tel: 010-62733847

摘要: 为探讨局部根区不同灌溉方式下裸燕麦(Avena nuda L.)光合能力下降的生理机制,采用盆栽及渗水盘供水方法,比较了交替根区灌溉(APRI)、固定根区灌溉(FPRI)和常规灌溉(CTRI)下,裸燕麦旗叶相对叶绿素含量(SPAD值)、光合特征曲线及叶绿素荧光动力学特性的差异。与CTRI处理相比,局部根区灌溉(包括APRI和FPRI处理)降低了叶片SPAD值、净光合速率(Pn)和初始羧化速率(CE),但APRI处理未明显降低初始量子效率(α)、PSII最大量子效率(Fv/Fm)、PSII实际光化学效率(ФPSII)、电子传递效率(ETR)和光化学效率 (qP)。在2种局部根区灌溉模式中,APRI较FPRI显著提高了叶片SPAD值(P<0.05),而且APRI的叶片最大净光合速率(Pmax)、α、光饱和点(LSP)、光能利用率(LUE)、Ci/Ca、CE、CO2饱和点(Ci,sat)、初始荧光(Fo)、最大荧光(Fm)、ФPSII、ETR、qP和非光化学效率(NPQ)均高于FPRI。APRI和FPRI的光合速率降低与气孔因素有关,FPRI光合速率降低还与PSII结构损伤有关;局部根区灌溉提高了裸燕麦干旱胁迫逆境下的耐受能力,APRI有利于保持更高的光合速率。

关键词: 局部灌溉, 干旱胁迫, 叶绿素荧光参数, 光合曲线, 裸燕麦

Abstract: The objective of this study was to provide experimental evidence for photosynthetic mechanism under drought stress and practical technique of water-saving irrigation in naked oat (Avena nuda L.). In a pot experiment with instrument to control root zone irrigation and water amount, the effects on relative chlorophyll content (SPAD), photosynthetic curves, and chlorophyll fluorescence parameters were compared among irrigation models of alternative partial root zone irrigation (APRI), fixed partial root zone irrigation (FPRI), and conventional total root zone irrigation (CTRI). Compared to CTRI, partial root zone irrigation, including APRI and FPRI treatments, decreased leaf SPAD, net photosynthetic rate (Pn), and carboxylation efficiency (CE); however, APRI had no obvious effects on reducing initial quantum efficiency (α), maximum photochemical efficiency (Fv/Fm), actual photochemical efficiency of PSII (ФPSII), apparent electron transport rate (ETR), and photochemical quenching coefficient (qP). The leaf SPAD of APRI was significantly enhanced compared to that of FPRI (P<0.05), and the maximum net photosynthetic rate (Pmax), α, light saturation point (LSP), light use efficiency (LUE), Ci/Ca, CE, CO2 saturation point (Ci,sat), Fo, Fm, ФPSII, ETR, qP, and NPQ were all higher in APRI than in FPRI. The reduction of Pn in partial root zone irrigation treatments resulted from stomatal factors, and structural damage of photosynthetic system II (PSII) was found in FPRI treatment. Clearly, partial root zone irrigation can improve the tolerance ability of naked oat against drought stress; particularly, APRI has the effect to maintain higher Pn than FPRI.

Key words: Partial root zone irrigation, Drought stress, Chlorophyll fluorescence parameters, Photosynthetic curve, Naked oat

[1]Rocquigny P J, Entz M H, Gentile R M, Duguid S D. Yield physiology of a semidwarf and tall oat cultivar. Crop Sci, 2004, 44: 2116–2122

[2]Zou C-W(邹朝望), Xue X-Z(薛绪掌), Zhang R-D(张仁铎), Geng W(耿伟), Li S(李邵), Chen F(陈菲). Principle and equipment of negative pressure irrigation. Trans CSAE (农业工程学报), 2007, 23(11): 17–22 (in Chinese with English abstract)

[3]Kang S-Z(康绍忠), Zhang J-H(张建华), Liang Z-S(梁宗锁), Hu X-T(胡笑涛), Cai H-J(蔡焕杰). The controlled alternative irrigation: a new approach for water saving regulation in farmland. Agric Res Arid Areas (干旱地区农业研究), 1997, 15(1): 1–6 (in Chinese with English abstract)

[4]Shi W-J(史文娟), Kang S-Z(康绍忠), Wang Q-J(王全九). Controlled root-split alternate irrigation: a new breakthrough of conventional water-saving irrigation techniques. J Irrig Drainage (灌溉排水学报), 2000, 19(1): 32–35 (in Chinese with English abstract)

[5]Sun J-S(孙景生), Kang S-Z(康绍忠), Cai H-J(蔡焕杰), Hu X-T(胡笑涛). Review on research progress of controlled alternate irrigation techniques. Trans CSAE (农业工程学报), 2001, 17(4): 1–5 (in Chinese with English abstract)

[6]Du T-S(杜太生), Kang S-Z(康绍忠), Zhang J-H(张建华). Response of cotton growth and water use to different partial root zone irrigation. Sci Agric Sin (中国农业科学), 2007, 40(11): 2546–2555 (in Chinese with English abstract)

[7]Tang L S, Li Y, Zhang J H. Physiological and yield responses of cotton under partial rootzone irrigation. Field Crop Res, 2005, 94: 214-223

[8]Bai X-L(白向历), Qi H(齐华), He P(何萍), Yu G-R(于贵瑞), Zhang Y-L(张耀兰), Li C(李春), Jin L-L(金路路), Ren Z-P(仁志萍). Effect of water stress on the photosynthetic characteristics of the leaf of oats during its grain-filling stage. Rain Fed Crops (杂粮作物), 2006, 26(1): 25–27 (in Chinese with English abstract)

[9]Zhang R-H(张仁和), Xue J-Q(薛吉全), Pu J(浦军), Zhao B(赵兵), Zhang X-H(张兴华), Zhang Y-J(郑友军), Bu L-D(卜令铎). Influence of drought stress on plant growth and photosynthetic traits in maize seedlings. Acta Agron Sin (作物学报), 2011, 37(3): 521–528 (in Chinese with English abstract)

[10]Kang H-J(康华靖), Tao Y-L(陶月良), Wang L-X(王立新), Ye Z-P(叶子飘), Li H(李红). Estimation of use efficiency in fixation of CO2 and photorespiration for maize (Zea mays) and sorghum (Sorghum bicolor) under photorespiratory conditions. Acta Agron Sin (作物学报), 2011, 37(11): 2039–2045 (in Chinese with English abstract)

[11]Hu W-X(胡文新), Peng S-B(彭少兵), Gao R-F(高荣孚), Ladha J K. Photosynthetic efficiency of a new plant type of rice developed by the international rice research institute. Sci Agric Sin (作物学报), 2005, 38(11): 2205–2210 (in Chinese with English abstract)

[12]Prioul J L, Chartier P. Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation: a critical analysis of the methods used. Ann Bot, 1977, 41: 789–800

[13]Marshall B, Biscoe P V. A model for C3 leaves describing the dependence of net photosynthesis on irradiance: I. Derivation. J Exp Bot, 1980, 31: 29–39

[14]Ye Z-P(叶子飘), Yu Q(于强). Acomparison of response curves of winter wheat photosynthesis to flag leaf intercellular and air CO2 concentrations. Chin J Ecol (生态学杂志), 2009, 28(11): 2233–2238 (in Chinese with English abstract)

[15]Hui H X, Xu X, Li Q R. Exogenous betaine improves the photosynthesis of Lycium barbarum under salt stress. Acta Bot Boreal-Occident Sin, 2003, 23: 2137–2422

[16]Cai H-X(蔡海霞), Wu F-Z(吴福忠), Yang W-Q(杨万勤). Effects of drought stress on the photosynthesis of Salix paraqplesia and Hippophae rhamnoides seedlings. Acta Ecol Sin (生态学报), 2011, 31(9): 2430–2436 (in Chinese with English abstract)

[17]Wang L, Zhang T, Ding S Y. Effect of drought and rewatering on photosynthetic physioecological characteristics of soybean. Acta Ecol Sin, 2006, 26: 2073–2078

[18]Zhang Y-Q(张永强), Mao X-S(毛学森), Sun H-Y(孙宏勇), Li W-J(李文杰), Yu H-N(于沪宁). Effects of drought stress on chlorophyll fluorescence of winter wheat. Chin J Eco-agric (中国生态农业学报), 2002, 10(4): 13–15 (in Chinese with English abstract)

[19]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Ann Rev Physiol, 1982, 33: 317–345

[20]Walting J R, Press M C, Quick W P. Elevated CO2 induces biochemical and ultranstructural changes in leaves of C4 cereal sorghum. Plant Physiol, 2000, 123: 1143–1152

[21]Zhang J-H(张建华), Jia W-S(贾文锁), Kang S-Z(康绍忠). Partial rootzone irrigation: its physiological consequences and impact on water use efficiency. Acta Bot Boreali-Occident Sin (西北植物学报), 2001, 21(2): 191–197 (in Chinese with English abstract)

[22]Erice G, Louahlia S, Irigoyen J J, Díaz M S, Alami I T, Avice J C. Water use efficiency, transpiration and net CO2 exchange of four alfalfa genotypes submitted to progressive drought and subsequent recovery. Environ Exp Bot, 2011, 72: 123–130

[23]Jiao J-Y(焦娟玉), Yin C-Y(尹春英), Chen K(陈珂). Effects of soil water and nitrogen supply on the photosynthetic characteristics of Jatropha curcas seedlings. Chin J Plant Ecol (植物生态学报), 2011, 35(1): 91–99 (in Chinese with English abstract)

[24]Jie Y-L(接玉玲), Yang H-Q(杨洪强), Cui M-G(崔明刚), Luo X-S(罗新书). Relationship between soil water content and water use efficiency of apple leaves. Chin J Appl Ecol (应用生态学报), 2001, 12(3): 387–390 (in Chinese with English abstract)

[25]Jiang G-M(蒋高明). Plant Physioecology (植物生理生态学). Beijing: Higher Education Press, 2004. pp 24–28 (in Chinese)

[26]Ephrath J E. The effects of drought stress on leaf elongation, photosynthesis and transpiration rate in maize leaves. Photosynthetica, 1991, 25: 607–619

[27]Li R H, Guo P G, Baum M, Grando S, Ceccarelli S. Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agric Sci China, 2006, 5: 751–757

[28]Mishra K B, Iannacone R, Petrozza A, Mishra A, Armentano N, Vecchia G L, Trtílek M, Cellini F, Nedbal L. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Sci, 2012, 182: 79–86
[1] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[2] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[3] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[4] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[5] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[6] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[7] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[8] 周练, 刘朝显, 熊雨涵, 周京, 蔡一林. 质膜内在蛋白ZmPIP1;1参与玉米耐旱性和光合作用的功能分析[J]. 作物学报, 2021, 47(3): 472-480.
[9] 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439.
[10] 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J]. 作物学报, 2020, 46(7): 1033-1051.
[11] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响[J]. 作物学报, 2020, 46(11): 1760-1770.
[12] 侯红乾,林洪鑫,刘秀梅,冀建华,刘益仁,蓝贤瑾,吕真真,周卫军. 长期施肥处理对双季晚稻叶绿素荧光特征及籽粒产量的影响[J]. 作物学报, 2020, 46(02): 280-289.
[13] 李旭凯,李任建,张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络[J]. 作物学报, 2019, 45(9): 1349-1364.
[14] 袁溢,朱双,方婷婷,蒋金金,王幼平. 人工合成甘蓝型油菜抗旱性及DNA甲基化水平分析[J]. 作物学报, 2019, 45(5): 693-704.
[15] 李萍,侯万伟,刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析[J]. 作物学报, 2019, 45(2): 267-275.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!