欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (06): 1051-1061.doi: 10.3724/SP.J.1006.2012.01051

• 耕作栽培·生理生化 • 上一篇    下一篇

耕作方式对小麦开花后旗叶水势与叶绿素荧光参数日变化和水分利用效率的影响

褚鹏飞1,2,于振文1,王东1,张永丽1,*,石玉1   

  1. 1山东农业大学农学院 / 农业部作物生理生态与栽培重点开放实验室, 山东泰安 271018; 2中国科学院植物研究所 / 植被与环境变化国家重点实验室, 北京100093
  • 收稿日期:2011-11-01 修回日期:2012-02-22 出版日期:2012-06-12 网络出版日期:2012-04-06
  • 通讯作者: 张永丽, E-mail: zhangyl@sdau.edu.cn, Tel: 0538-8247828
  • 基金资助:

    本研究由国家自然科学基金项目(31171498)和国家现代农业产业技术体系建设项目(CARS-3-1-19)资助。

Effect of Tillage Mode on Diurnal Variations of Water Potential and Chlorophyll Fluorescence Characteristics of Flag Leaf after Anthesis and Water Use Efficiency in Wheat

CHU Peng-Fei1,2,YU Zhen-Wen1,WANG Dong1,ZHANG Yong-Li1,*,SHI Yu1   

  1. 1 College of Agronomy, Shandong Agricultural University / Key Laboratory of Crop Ecophysiology and Cultivation, Ministry of Agriculture, Tai’an 271018, China; 2 Institute of Botany, Chinese Academy of Sciences / State Key Laboratory of Vegetation and Environmental Change, Beijing 100093, China
  • Received:2011-11-01 Revised:2012-02-22 Published:2012-06-12 Published online:2012-04-06
  • Contact: 张永丽, E-mail: zhangyl@sdau.edu.cn, Tel: 0538-8247828

摘要: 2007—2009年小麦生长季, 以高产小麦品种济麦22为试验材料, 利用测墒补灌技术确定灌水量, 研究高肥力条件下条旋耕、深松+条旋耕、旋耕、深松+旋耕和翻耕5种耕作方式对土壤含水量、小麦开花至成熟阶段耗水量及其水分来源、旗叶水势和叶绿素荧光参数日变化、籽粒产量和水分利用效率的影响。结果表明, 深松+条旋耕和深松+旋耕处理成熟期60~200 cm各土层的土壤含水量均低于其他处理, 表明深松促进了小麦对深层土壤贮水的吸收。深松+条旋耕处理开花至成熟阶段的土壤贮水消耗量及其占阶段耗水量的比例最高, 其降水量和灌水量占阶段耗水量的比例最低。深松+条旋耕处理在6:00~18:00的旗叶水势、8:00~14:00的旗叶最大光化学效率(Fv/Fm)和实际光化学效率(ΦPSII)均高于条旋耕处理, 表明深松有利于小麦旗叶在灌浆中后期保持较高的生理活性, 深松+旋耕和旋耕处理间的规律与其一致。深松+条旋耕处理在2个生长季的籽粒产量分别为9 516.48和8 957.92 kg hm−2, 与深松+旋耕处理无显著差异, 翻耕处理次之, 条旋耕和旋耕处理低于上述处理。深松+条旋耕处理的水分利用效率最高, 深松+旋耕处理次之, 条旋耕和旋耕处理低于翻耕处理。本试验条件下, 深松+条旋耕是兼顾高产节水高效的耕作方式。

关键词: 小麦, 耕作方式, 水势, 叶绿素荧光参数, 水分利用效率

Abstract: Water resource shortage has become the urgent problem limiting wheat (Triticum aestivum L.) production in Yellow-Huaihe-Haihe Rivers Plain of China. A crucial target of wheat production is to develop water-saving agriculture to reduce irrigation water and increase the water use efficiency (WUE). The objective of this study was to understand the effects of tillage practices on soil moisture content, water potential and consumption in plants, diurnal variation of chlorophyll fluorescence characteristic in flag leaf after anthesis, and grain yield in wheat under flexible irrigation conditions. A high-yielding wheat cultivar, Jimai 22, was continuously planted in the same plot across two growing seasons from 2007 to 2009. Five tillage modes were established with flexible irrigation after measuring soil moisture, which were strip rotary tillage (SR), strip rotary tillage after subsoiling (SRS), rotary tillage (R), rotary tillage after subsoiling (RS), and plowing tillage (P). The moisture contents of soil layers within 0–200 cm were measured at sowing, jointing, and anthesis stages. In the 2008–2009 growing season, the diurnal variation of water potential and chlorophyll fluorescence characteristic in flag leaf were measured at 22 d and 24 d after anthesis. The SRS and RS treatments had the lowest moisture content in different soil layers of 60–200 cm below surface. The result indicated that subsoiling had the effect to promote water absorption of wheat in deep soil layers. From anthesis to maturity, the water consumption of SRS treatment exhibited the highest amount and ratio from soil and the lowest ratio from precipitation and irrigation. Compared with SR treatment, SRS treatment had higher water potential from 6:00 to 18:00 and larger values of Fv/Fm and ΦPSII of flag leaf from 8:00 to 14:00. Clearly, subsoiling was favorable to keep high physiological activity from mid to late filling stage. The positive effect of subsoiling was confirmed by the comparison between RS and R treatments. Among the five tillage treatments, SRS produced the highest grain yield of 9 516.48 kg ha−1 in 2007–2008 growing season and 8 957.92 kg ha−1 in 2008–2009 growing season. The yield level of RS had no significant difference from that of SRS treatment. In contrast, SR and R treatments showed the lowest yields in all treatments. As for WUE, the ranking sequence of treatments was SRS > RS > P > SR or R. Therefore, we recommend SRS as the best tillage practice for high yield and water saving in wheat producing areas with similar ecological conditions to the experiment.

Key words: Wheat, Tillage, Water potential, Chlorophyll fluorescence characteristics, Water use efficiency

[1]Li J., Inanaga S, Li Z, Eneji A E. Optimizing irrigation scheduling for winter wheat in the North China Plain. Agric Water Manage, 2005, 76: 8-23

[2]Pereira L S, Cai L G, Hann M J. Farm water and soil management for improved water use in the North China Plain. Irrig Drain, 2003, 52: 299-317

[3]De Vita P, Di Paolo E, Fecondo G, Di Fonzo N, Pisante M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tilagel Res, 2007, 92: 69-78

[4]Li Y-J(李友军), Wu J-Z(吴金芝), Huang M(黄明), Yao Y-Q(姚宇卿), Zhang C-J(张灿军), Cai D-X(蔡典雄), Jin K(金轲). Effects of different tillage systems on photosynthesis characteristics of flag leaf and water use efficiency in winter wheat. Trans CSAE (农业工程学报), 2006, 22(12): 44-48 (in Chinese with English abstract)

[5]Bhatt R, Khera K L. Effect of tillage and mode of straw mulch application on soil erosion in the submontaneous tract of Punjab, India. Soil Tillage Res, 2006, 88: 107-115

[6]Wang X B, Cai D X, Hoogmoed W B, Oenema O, Perdok U D. Developments in conservation tillage in rainfed regions of North China. Soil Tillage Res, 2007, 93: 239-250

[7]Hemmat A, Eskandari I. Dryland winter wheat response to conservation tillage in a continuous cropping system in northwestern Iran. Soil Tillage Res, 2006, 86: 99-109

[8]Martínez E, Fuentes J P, Silva P, Valle S, Acevedo E. Soil physical properties and wheat root growth as affected by no-tillage and conventional tillage systems in a Mediterranean environment of Chile. Soil Tillage Res, 2008, 99: 232-244

[9]Birkás M, Jolánkai M, Gyuricza C, Percze A. Tillage effects on compaction, earthworms and other soil quality indicators in Hungary. Soil Tillage Res, 2004, 78: 185-196

[10]Qin H-L(秦红灵), Gao W-S(高旺盛), Ma Y-C(马月存), Ma L(马丽), Yin C-M(尹春梅). Effects of subsoiling on soil moisture under no-tillage 2 years later. Sci Agric Sin (中国农业科学), 2008, 41(1): 78-85 (in Chinese with English abstract)

[11]Mohanty M, Bandyopadhyay K K, Painuli D K, Ghosh P K, Misra A K, Hati K M. Water transmission characteristics of a vertisol and water use efficiency of rainfed soybean [Glycine max (L.) Merr.] under subsoiling and manuring. Soil Tillage Res, 2007, 93: 420-428

[12]Evans S D, Lindstrom M J, Voorhees W B, Moncrief J F, Nelson G A. Effect of subsoiling and subsequent tillage on soil bulk density, soil moisture, and corn yield. Soil Tillage Res, 1996, 38: 35-46

[13]Lampurlanés J, Angás P, Cantero-Martínez C. Root growth, soil water content and yield of barley under different tillage systems on two soils in semiarid conditions. Field Crop Res, 2001, 69: 27-40

[14]Chu P-F(褚鹏飞), Yu Z-W(于振文), Wang D(王东), Zhang Y-L(张永丽). Effects of tillage on water consumption characteristics and grain yield of wheat. Sci Agric Sin (中国农业科学), 2010, 43(19): 3954-3964 (in Chinese with English abstract)

[15]Izumi Y, Yoshida T, Iijima M. Effects of subsoiling to the nontilled field of wheat-soybean rotation on the root system development, water uptake, and yield. Plant Prod Sci, 2009, 12: 327-335

[16]Zhou X-B(周勋波), Sun S-J(孙淑娟), Chen Y-H(陈雨海), Li Q-Q(李全起), Yang G-M(杨国敏). Relationship between water character and yield component under different distribution patterns of winter wheat population. J Soil Water Conserv (水土保持学报), 2007, 21(1): 119-122 (in Chinese with English abstract)

[17]Zhang M(张鸣), Zhang R-Z(张仁陟), Cai L-Q(蔡立群). Leaf water potential of spring wheat and field pea under different tillage patterns and its relationship with environmental factors. Chin J Appl Ecol, 2008, 19(7): 1467-1474 (in Chinese with English abstract)

[18]Huggins D R, Pan W L. Wheat stubble management affects growth, survival, and yield of winter grain legumes. Soil Sci Soc Am J, 1991, 55: 823-829

[19]Zhang Q-D(张其德), Liu H-Q(刘合芹), Zhang J-H(张建华), Li J-M(李建民). Effects of limited irrigation on some photosynthetic functions of flag leaves in winter wheat. Acta Agron Sin (作物学报), 2000, 26(6): 869-872 (in Chinese with English abstract)

[20]Jiang D(姜东), Xie Z-J(谢祝捷), Cao W-X(曹卫星), Dai T-B(戴廷波), Jing Q(荆奇). Effects of post-anthesis drought and water-logging on photosynthetic characteristics, assimilates transportation in winter wheat. Acta Agron Sin (作物学报), 2004, 30(2): 175-182 (in Chinese with English abstract)

[21]Hou X-Q(侯贤清), Jia Z-K(贾志宽), Han Q-F(韩清芳), Wang W (王维), Ding R-X(丁瑞霞), Nie J-F(聂俊峰), Li Y-P(李永平). Effects of rotational tillage on flag leaf photosynthetic characteristics and yield after anthesis of winter wheat in arid areas of southern Ningxia. Sci Agric Sin (中国农业科学), 2011, 44(15): 3108-3117 (in Chinese with English abstract)

[22]Huang G-B(黄高宝), Guo Q-Y(郭清毅), Zhang R-Z(张仁陟), Pang L(逄蕾), Chan K-Y, Yu A-Z(于爱忠). Effects of conservation tillage on soil moisture and crop yield in a phased rotation system with spring wheat and field pea in dryland. Acta Ecol Sin (生态学报), 2006, 26(4): 1176-1185 (in Chinese with English abstract)

[23]Su Z Y, Zhang J S, Wu W L, Cai D X, Lu J J, Jiang G H, Huang J, Gao J, Hartmann R, Gabriels D. Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China. Agric Water Manage, 2007, 87: 307-314

[24]Ramon J, Agnès H. Effects of tillage systems in dryland farming on near-surface water content during the late winter period. Soil Tillage Res, 2005, 82: 173-183

[25]Shan L(山仑), Kang S-Z(康绍忠), Wu P-T(吴普特). Water Saving Agriculture in China (中国节水农业). Beijing: China Agriculture Press, 2004. pp 229-230 (in Chinese)

[26]Quanqi L, Yuhai C, Mengyu L, Xunbo Z, Baodi D, Songlie Y. Water potential characteristics and yield of summer maize in different planting patterns. Plant Soil Environ, 2008, 54: 14-19

[27]Ma Q Q, Wang W, Li Y H, Li D Q, Zou Q. Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. J Plant Physiol, 2006, 163: 165-175

[28]Schreiber V, Schliwa U. Continuous recording of photochemical and nonphotochemical chlorophyll fluoremeier. Photosynth Res, 1986, 10: 51-62

[29]Govidjee. A role for a light-harvesting antenna complex of photosystem II in photo protection. Plant Cell, 2002, 14: 1663-1667

[30]Liu Z-J(刘增进), Li B-P(李宝萍), Li Y-H(李远华), Cui Y-L(崔远来). Research on the water use efficiency and optimal irrigation schedule of the winter wheat. Trans CSAE (农业工程学报), 2004, 20(4): 58-63 (in Chinese with English abstract)

[31]Fang Q-X(房全孝), Chen Y-H(陈雨海). Study on the regularity water consumption of winter wheat and its ecological basis under water-saving irrigation conditions. Acta Agric Boreali-Sin (华北农学报), 2003, 18(3): 18-22 (in Chinese with English abstract)

[32]Hou L-T(侯连涛), Jiang X-D(江晓东), Han B(韩宾), Jiao N-Y(焦念元), Zhao C(赵春), Li Z-J(李增嘉). Effects of different mulching treatments on the gas exchange parameters and water use efficiency of winter wheat. Trans CSAE (农业工程学报), 2006, 22(9): 58-63 (in Chinese with English abstract)

[33]Ma Y-X(马元喜), Wang C-Y(王晨阳), He D-X(贺德先), Liu D-Y(刘殿英). The Roots of Wheat (小麦的根). Beijing: China Agriculture Press, 1999. p 117 (in Chinese with English abstract)

[34]Baumhardt R L, Jones O R. Residue management and tillage effects on soil water storage and grain yield of dryland wheat and sorghum for a clay loam in Texas. Soil Tillage Res, 2002, 68: 71-82

[35]Jiang X-D(江晓东), Li Z-J(李增嘉), Hou L-T(侯连涛), Wang Y(王芸), Wang X(王雪), Yan H(颜红). Impacts of minimum tillage and no-tillage systems on soil NO3--N content and water use efficiency of winter wheat/summer corn cultivations. Trans CSAE (农业工程学报), 2005, 21(7): 20-24 (in Chinese with English abstract)

[36]Liu G-S(刘庚山), Guo A-H(郭安红), Ren S-X(任三学), An S-Q(安顺清), Lin R-N(林日暖), Zhao H-R(赵花荣). The effect of limited water supply on root growth and soil water use of winter wheat. Acta Ecol Sin (生态学报), 2003, 23(11): 2342-2352 (in Chinese with English abstract)

[37]Wang S-H(王士红), Jing Q(荆奇) Dai T-B(戴廷波), Jiang D(姜东), Cao W-X(曹卫星). Evolution characteristics of flag leaf photosynthesis and grain yield of wheat cultivars bred in different years. Chin J Appl Ecol (应用生态学报), 2008, 19(6): 1255-1260 (in Chinese with English abstract)

[38]Jiang X-D(江晓东), Wang Y(王芸), Hou L-T(侯连涛), Li Z-J(李增嘉), Wang X(王雪), Guo Z-H(郭志华). Effects of minimum tillage and no-tillage systems on photosynthetic characteristics at late growth stages of winter wheat. Trans CSAE (农业工程学报), 2006, 22(5): 66-69 (in Chinese with English abstract)

[39]Tambussi E A, Nogués S, Araus J L. Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta, 2005, 221: 446-458

[40]Hu M-Y(胡梦芸), Zhang Z-B(张正斌), Xu P(徐萍), Dong B-D(董宝娣), Li W-Q(李魏强), Li J-J(李景娟). Relationship of water use efficiency with photoassimilate accumulation and transport in wheat under deficit irrigation. Acta Agron Sin(作物学报), 2007, 33(11): 1884-1891 (in Chinese with English abstract)

[41]Xue Q, Zhu Z, Musick J T, Stewart B A, Dusek D A. Root growth and water uptake in winter wheat under deficit irrigation. Plant Soil, 2003, 257: 151-161

[42]Franzluebbers A J. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res, 2002, 66: 197-205

[43]Du B(杜兵), Li W-Y(李问盈), Deng J(邓健), Liao Z-X(廖植樨). Research on surface tillage in conservation tillage. J China Agric Univ (中国农业大学学报), 2000, 5(4): 65-67 (in Chinese with English abstract)

[44]Wang Y-H(王育红), Yao Y-Q(姚宇卿), Lü J-J(吕军杰), Huang J-T(黄江涛), Zhang J(张洁). Ecological effect of subsoiling high stubble on the winter wheat in sloping land of western Henan. Chin J Eco-agric (中国生态农业学报), 2004, 12(2): 146-148 (in Chinese with English abstract)

[45]Lü M-R(吕美蓉), Li Z-J(李增嘉), Zhang T(张涛), Ning T-Y(宁堂原), Zhao J-B(赵建波), Li H-J(李洪杰). Effects of minimum or no-tillage system and straw returning on extreme soil moisture and yield of winter wheat. Trans CSAE (农业工程学报), 2010, 26(1): 41-46 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!