欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (06): 1027-1034.doi: 10.3724/SP.J.1006.2014.01027

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个快速响应干旱的F-box基因的克隆和表达分析

尹恒,余琴鸯,安利佳,李文利   

  1. 大连理工大学生命科学与技术学院, 辽宁大连 116024
  • 收稿日期:2013-09-26 修回日期:2014-01-12 出版日期:2014-06-12 网络出版日期:2014-03-24
  • 通讯作者: 李文利, E-mail: biolwl@dlut.edu.cn
  • 基金资助:

    本研究由辽宁省科技厅农业攻关项目(2011208001)资助。

Cloning and Expression Analysis of an F-box Gene (SiFBX) Rapidly Responsive to Drought Stress

IN Heng,YU Qin-Yang,AN Li-Jia,LI Wen-Li   

  1. School of Life Science & Biotechnology, Dalian University of Technology, Dalian 116023, China
  • Received:2013-09-26 Revised:2014-01-12 Published:2014-06-12 Published online:2014-03-24

摘要:

F-boxSkp1-Cullin1-F-box (SCF)型泛素连接酶E3的重要组成部分,在泛素化介导的蛋白质降解中选择性识别靶蛋白。本文从谷子苗期干旱胁迫条件下构建的转录组文库中克隆到与耐旱早期响应相关的F-box基因,命名SiFBX (GenBank登录号为KC252635.1)。该基因全长510 bp,编码170个氨基酸。蛋白质结构预测表明,该蛋白含有丰富的精氨酸、亮氨酸、丝氨酸,缺少跨膜结构域及信号肽序列。系统进化分析表明,该基因与已报道的EID1FBW4亲缘关系较近。在该基因上游1.9 kb序列处,预测到启动子的核心序列及与多种逆境胁迫相关的调控序列。荧光定量PCR分析表明,该基因分别在正常干旱、PEGABA诱导下,表达量出现显著变化。

关键词: 谷子, 干旱响应, F-box, 表达分析

Abstract:

F-box proteins, components of the Skp1-Cullin1-F-box (SCF) protein E3 ubiquitin ligase complex, serve as the variable component responsible for substrate recognition and recruitment in SCF-mediated proteolysis. The anti-drought relative gene of SiFBX (GenBank accession number KC252635.1) which belongs to the F-box super family was cloned from foxtail millet (Setaria italic). The full-length cDNA of SiFBX was 510 bp, which encoded 170 amino acid residues. Protein analysis and structure predication showed that it had a higher proportion of arginine (R), leucine (L), and serine (S) and a lack of trans-membrane domains and signal peptide. Phylogenetic analysis demonstrated that SiFBX had similarity with EID1 and FBW4. Many abiotic stress-related cis-acting elements and transcription factors were discovered in the 1.9 kb upstream region of SiFBX. The results of real-time PCR showed that there were remarkable changes in the expectation level of SiFBX for the treatments with PEG, water-withholding and ABA.

Key words: Setaria italica, Drought response, F-box protein, qRT-PCR

[1]Hong M J. Wheat F-box protein recruits proteins and regulates their abundance during wheat spike development. Mol Biol Rep, 2012, 39: 9681–9696



[2]Hua Z H, Zou C, Shiu S H, Vierstra R D. Phylogenetic comparison of F-box (FBX) gene superfamily within the plant kingdom reveals divergent evolutionary histories indicative of genomic drift. PLoS One, 6: e16219



[3]Kuroda H, Shimada H, Shinozaki K. Classification and expression analysis of Arabidopsis F-box-containing protein genes. Plant Cell Physiol, 2002, 43: 1073–1085



[4]Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi A K, Khurana J P. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol, 2007, 143: 1467–1483



[5]Lechner E, Vansiri A, Genschik P. F-box proteins everywhere. Curr Opin Plant Biol, 2006, 9: 631–638



[6]Somers D E, Kim W Y. The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomor phogenesis, and flowering time. Plant Cell, 2004, 16: 769–782



[7]Imaizumi T, Schultz T F, Ho L A. FKF1F-BOX protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science, 2005, 309: 293–297



[8]Marrocco K, Zhou Y C, Bury E, Dieterle M, Funk M, Genschik P, Krenz M, Stolpe T, Kretsch T. Functional analysis of EID1, an F-box protein involved in phytochrome A-dependent light signal transduction. Plant J, 2006, 45: 423–438



[9]Chae E, Tan Q K, Hill T A. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development, 2008, 135: 1235–1245



[10]Wang X, Feng S, Nakayama N. The COP9 signalosome interacts with SCF UFO and participates in Arabidopsis flower development. Plant Cell, 2003, 15: 1071–1082



[11]Durfee T, Roe J L, Sessions R A. The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis. Proc Natl Acad Sci USA, 2003, 100: 8571–8576



[12]Eckardt N A. DOT/UFO emerges as a key factor in inflorescence patterning. Plant Cell, 2008, 20: 2003–2005



[13]Ebel M, Schaeffer A. Cyanide phytoremediation by water hyacinths (Eichhornia crassipes). Chemosphere, 2007, 66: 816–823



[14]Lata C, Gupta S, Prasad M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol, 2013, 33: 328–343



[15]崔润丽, 智慧, 王永芳, 李伟, 李海权, 黄占景, 刁现民. 谷子DnaJ蛋白基因的克隆. 华北农学报. 2007, 22(4): 9–13



Cui R L, Zhi H, Wang Y F, Li W, Li H Q, Huang Z J, Diao X M. Cloning of DnaJ-like protein gene from foxtail millet. Acta Agric Boreali-Sin, 2007, 22(4): 9–13 (in Chinese with English abstract)



[16]杨希文, 胡银岗. 谷子DREB转录因子基因的克隆及其在干旱胁迫下的表达模式分析. 干旱地区农业研究. 2011, 29(5): 69–74



Yang X W, Hu Y G. Cloning of a DREB gene from foxtail millet (Setaria italica L.) and its expression during drought stress. Agric Res Arid Areas, 2011, 29(5): 69–74 (in Chinese with English abstract)



[17]Zhang J P, Liu T S, Zheng J, Jin Z, Zhu Y, Guo J F, Wang G Y. Cloning and characterization of a putative 12-oxophytodienoic acid reductase cDNA induced by osmotic stress in roots of foxtail millet. DNA Seq, 2007, 18: 138–144



[18]崔润丽, 智慧, 王永芳, 李伟, 李海权, 黄占景, 刁现民. 谷子3-磷酸甘油醛脱氢酶基因的克隆与结构分析. 华北农学报. 2009, 24(3): 10–14



Cui R L, Zhi H, Wang Y F, Li W, Li H Q, Huang Z J, Diao X M. Cloning and structure analysis of Foxtail Millet APDH gene. Acta Agric Boreali-Sin, 2009, 24(3): 10–14 (in Chinese with English abstract)



[19]Peng Y L, Zhang J P, Cao G Y. Overexpression of a PLD alpha 1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance. Plant Cell Rep, 2010, 29: 793–802



[20]赵晋锋, 余爱丽, 田岗, 杜艳伟, 郭二虎, 刁现民. 谷子CBL基因鉴定及其在干旱、高盐胁迫下的表达分析. 作物学报, 2013, 39: 360–367



Zhao J F, Yu A L, Tian G, Du Y W, Guo E H, Diao X M. Identification of CBL genes from foxtail millet (Setaria italica [L.] Beauv. ) and its expression under drought and salt stresses. Acta Agron Sin, 2013, 39: 360–367 (in Chinese with English abstract)



[21]张雁明, 王莉, 张彬, 王海岗, 彭锁堂, 李萍, 韩渊怀. 谷子ABF3基因对PEG胁迫的响应. 山西农业大学学报(自然科学版), 2013, 33(3): 191–196



Zhang Y M, Wang L, Zhang L, Wang H G, Peng S T, Li P, Han Y H. The response of ABF3 gene to PEG stress in Foxtail millet L. J Shanxi Agric Univ (Nat Sci Edn), 2013, 33(3): 191–196 (in Chinese with English abstract)



[22]Xu G, Ma H, Nei M, Kong H. Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification. Proc Natl Acad Sci USA, 2009, 106: 835–840



[23]Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res, 2002, 30: 325–327



[24]Bai C, Richman R. Human cyclin-F. EMBO J, 1994, 13: 6087–6098



[25]Buche C, Schafer E. eid1: A new arabidopsis mutant hypersensitive in phytochrome A-dependent high-irradiance responses. Plant Cell, 2000, 12: 547–558



[26]Koops P, Pelser S, Ignatz M. EDL3 is an F-box protein involved in the regulation of abscisic acid signalling in Arabidopsis thaliana. J Exp Bot, 2011, 62: 5547–5560



[27]Asada S, Ikeda A, Nagao R, Hama H, Sudo T, Fukamizu A, Kasuya Y, Kishi T. Oxidative stress-induced ubiquitination of RCAN1 mediated by SCF beta-TrCP ubiquitin ligase. Intl J Mol Med, 2008, 22: 95–104



[28]Ding Z H, Li S M, An X L, Liu X J, Qin H M, Wang D. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genomic, 2009, 36: 17–29



[29]Jin J, Li C, Lv B, Ming F, Zhang W. New gene Oryza sativa MYB84 useful for improving rice plant varieties and high salt resistance in plants. Chinese, CN102676544-A, 2012-9-19



[30]Chen T, Liu J, Lei G, Liu Y F, Li Z G, Tao J J, Hao Y J, Cao Y R, Lin Q, Zhang W K, Ma B, Chen S Y, Zhang J S. Effects of tobacco ethylene receptor mutations on receptor kinase activity, plant growth and stress responses. Plant Cell Physiol, 2009, 50: 1636–1650



[31]Ye H Y, Du H, Tang N, Li X H, Xiong L Z. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol, 2009, 71: 291–305

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[3] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[4] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[5] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[6] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[7] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[8] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[9] 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846.
[10] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[11] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[12] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[13] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[14] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[15] 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!