作物学报 ›› 2014, Vol. 40 ›› Issue (09): 1572-1578.doi: 10.3724/SP.J.1006.2014.01572
冯勋伟1,2,才宏伟1
FENG Xun-Wei1,2,CAI Hong-Wei1
摘要:
结缕草是优良的暖季型草坪草之一, 主要用于亚热带和热带地区的草坪种植。抗冷性是结缕草栽培范围的限制因子。本研究以日本最北部原产的结缕草品系为材料, 根据其他植物的已知的抗寒基因CBF序列, 通过同源克隆的方法获得结缕草中相对应的同源基因ZjCBF;根据和其他已报告的CBF序列的比对结果, 我们确定ZjCBF基因属于CBF转录因子家族基因中CBF1型基因。利用半定量PCR和实时定量PCR分析该基因在寒冷条件下的表达情况, 发现ZjCBF基因受冷胁迫的诱导, 在
[1]Zhu J H, Dong C H, Zhu J K. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol, 2007, 10: 290–295[2]Stocking E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 1997, 94: 1035–1040[3]Haake V, Cook D, Riechrmnn J L, Pineda O, Thomashow M F, Zhang J Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol, 2002, 130: 639–648[4]Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold- inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998–1009[5]Jaglo K R, Kleff S, Amundsen K L, Zhang X, Haake V, Zhang J Z, Deits T, Thmashow M F. Components of the Arabidopsis C-repeat / dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol, 2001, 127: 910–917[6]Hsieh T H, Lee J T, Yang P T, Chiu L H, Chang Y Y, Wang Y C, Chan M T. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative Stresses in transgenic tomato. Plant Physiol, 2002, 129: 1086–1094[7]Choi D W, Rodriguez E M, Close T J. Barley cbf3 gene identification, expression pattern, and map location. Plant Physiol, 2002, 129: 1781–1787[8]Burren M L, Salvi S, Morgante M, Serhani B, Tubelma R. Comparative genomic mapping Between a 745 kb region flanking DREBlA in Arabidopsis thaliana and maize. Plant Mol Biol, 2002, 48: 741–750[9]Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubonzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L. encode transcription activators that function in drought-, high-salt and cold-responsive gene expression. Plant J, 2003, 33: 751–763[10]Rogers O S, Bendich A J. Extraction of DNA from plant tissue. Plant Mol Biol Manual, 1998, A6: 1–10[11]Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 1994, 6: 251–264[12]Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activation as an early step cold-induced COR gene expression. Plant J, 1998, 16: 433–442[13]Medina J, Bargues M, Terol J, Perez M, Salinas J. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol, 1999, 19: 463–470 [14]Agarwal M, Hao Y, Kapoor A, Dong C H, Hiroaki F, Zheng X, Zhu J K. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem, 2006, 281: 37636–37645[15]Liu Q, Kuasga M, Skauma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription fctors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391–1406[16]Jaglo-Ottoseu K R, Gilmour S J, Zarka D G. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280: 104–106[17]Novillo F, Alonso J M, Ecker J R, Salinas J. CBF2/DREBlC is a negative regulator of CBFl/DREBlB and CBF3/DREBIA expression and plays accentual role in stress tolerance in Arabidopsis. Plant Biol, 2004, 11: 3885–3900 |
[1] | 白冬梅,薛云云,赵姣姣,黄莉,田跃霞,权宝全,姜慧芳. 山西花生地方品种芽期耐寒性鉴定及SSR遗传多样性[J]. 作物学报, 2018, 44(10): 1459-1467. |
[2] | 薛志飞, 王夏, 李付鹏, 马朝芝. 甘蓝型油菜BnGS3和BnGhd7的同源克隆及其与油菜产量相关性状的关系[J]. 作物学报, 2018, 44(02): 297-305. |
[3] | 吴转娣,刘新龙,刘家勇,昝逢刚,李旭娟,刘洪博,林秀琴,陈学宽,苏火生,赵培方,吴才文. 甘蔗独脚金内酯生物合成关键基因ScD27的克隆与表达分析[J]. 作物学报, 2017, 43(01): 31-41. |
[4] | 苏亚春,黄珑,凌辉,王竹青,刘峰,苏炜华,黄宁,吴期滨,高世武,阙友雄. 甘蔗CDK基因的cDNA全长克隆与表达分析[J]. 作物学报, 2017, 43(01): 42-50. |
[5] | 许玉超,侯喜林,徐玮玮,沈露露,张仕林,刘世拓,胡春梅. 紫色不结球白菜花色苷合酶基因BrcANS的克隆与表达分析[J]. 作物学报, 2016, 42(06): 850-859. |
[6] | 吕艳艳,付三雄,陈松,张维,戚存扣*. 甘蓝型油菜BnADH3基因的克隆及转BnADH3拟南芥的耐淹性[J]. 作物学报, 2015, 41(04): 565-573. |
[7] | 黄珑,苏炜华,张玉叶,黄宁,凌辉,肖新换,阙友雄,陈如凯. 甘蔗CIPK基因的同源克隆与表达[J]. 作物学报, 2015, 41(03): 499-506. |
[8] | 郝小琴,姚鹏鹤,高峥荣,吴子恺. 低温胁迫对微胚乳超甜超高油玉米耐寒性生理生化特性的影响[J]. 作物学报, 2014, 40(08): 1470-1484. |
[9] | 彭学聪,杨秀芬,邱德文,曾洪梅,郭立华,刘峥*. 蛋白激发子Hrip1基因在拟南芥中表达可提高植株的耐盐耐旱能力[J]. 作物学报, 2013, 39(08): 1345-1351. |
[10] | 张德静,秦丽霞,李龙,饶玥,李学宝,许文亮. 异源表达棉花GhPRP5基因增强了拟南芥对盐和ABA的敏感性[J]. 作物学报, 2013, 39(03): 563-569. |
[11] | 乔麟轶,张磊,张文萍,赵光耀,王玺,贾继增. 小麦生长素结合基因TaABP1-D的克隆、功能标记开发及其与株高的关联[J]. 作物学报, 2012, 38(11): 2034-2041. |
[12] | 熊冠军, 徐芹, 华金平. 陆地棉两个同源基因GhBlind的克隆与表达分析[J]. 作物学报, 2011, 37(02): 362-368. |
[13] | 万小荣,莫爱琼,郭小建,杨妙贤,余土元,曹锦萍. 含异位表达花生AhNCED1基因的拟南芥提高耐渗透胁迫能力[J]. 作物学报, 2010, 36(09): 1440-1449. |
[14] | 王艳,马纪*,黄薇,邱立明,叶锋,张富春. 叶绿体型转昆虫抗冻蛋白基因烟草的耐寒性[J]. 作物学报, 2009, 35(7): 1253-1360. |
[15] | 滕利生; 徐丽莎. 水稻闭颖授粉特性的遗传及其生物学意义[J]. 作物学报, 1992, 18(04): 296-300. |
|