欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (04): 565-573.doi: 10.3724/SP.J.1006.2015.00565

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜BnADH3基因的克隆及转BnADH3拟南芥的耐淹性

吕艳艳,付三雄,陈松,张维,戚存扣*   

  1. 江苏省农业科学院经济作物研究所 / 江苏省现代作物生产协同创新中心,江苏南京210014
  • 收稿日期:2014-07-11 修回日期:2015-02-05 出版日期:2015-04-12 网络出版日期:2015-03-02
  • 通讯作者: 戚存扣, E-mail: qck9898@sina.com
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-13)和国家科技支撑计划项目(2010BAD01B10)资助。

Cloning of BnADH3 Gene from Brassica napus L. and Submergence Tolerance of BnADH3 Transgenic Arabidopsis

LÜ Yan-Yan,FU San-Xiong,CHEN Song,ZHANG Wei,QI Cun-Kou*   

  1. Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210014, China
  • Received:2014-07-11 Revised:2015-02-05 Published:2015-04-12 Published online:2015-03-02
  • Contact: 戚存扣, E-mail: qck9898@sina.com

摘要:

利用RT-PCR技术从甘蓝型油菜耐淹品系WR-4中克隆获得BnADH3基因,其完整开放阅读框为1137 bp该基因编码379个氨基酸,与甘蓝BoADH3基因和拟南芥AtADH3基因高度同源,同源性分别达到96%和91%。利用定量RT-PCR检测BnADH3基因在油菜耐淹系WR-4和不耐淹系WR-24中的表达表明,在淹水处理下该基因表达受到一定的诱导,淹水处理6 h后表达开始上调,说明BnADH3基因在油菜耐淹机制中发挥作用;将其转化到模式生物拟南芥中,采用幼苗淹水3 d后去水处理,测定表明转基因株系叶片和根系中乙醇脱氢酶活性均高于野生型;生长4周和6周的拟南芥植株淹水3 d后的表型显示,BnADH3的表达可增强拟南芥对淹水胁迫的耐性,处理的T2代转基因幼苗大部分恢复,但野生型幼苗枯死;调查表明,淹水5 d后野生型植株的存活率为26.7%,转基因株系ADH33和ADH44的存活率分别为80.0%和66.7%。

关键词: 甘蓝型油菜, 基因BnADH3, 转基因拟南芥, 淹水胁迫, 耐淹性

Abstract:

BnADH3 gene was highly homologous to BoADH3 from Brassica oleracea and AtADH3 from Arabidopsis, with the BnADH3  expression was induced by submergence and the up-regulation occurred since 6-hour post treatment. The BnADH3 transgenic Arabidopsis was obtained and the transgenic seedBnADH3 gene was cloned from submergence-tolerant line WR-4 of Brassica napus L. using RT-PCR technique. The full-length open reading frame is 1137 bp, encoding 379 amino acids. Homology analysis showed that BnADH3 gene was highly homologous to BoADH3 from Brassica oleracea and AtADH3 from Arabidopsis, with the 96% and 91% similarity, respectively. Quantitative RT-PCR assay was carried out to compare BnADH3 expression between the submergence-tolerant line WR-4 and the submergence-susceptible line WR-24. The result showed that the BnADH3  expression was induced by submergence and the up-regulation occurred since 6-hour post treatment. The BnADH3 transgenic Arabidopsis was obtained and the transgenic seedlings were exposed to three-day submergence stress. Overexpression of BnADH3 resulted in higher ADH activity in leaf and root of transgenic Arabidopsis compared to that of the wild type. The four- and six-week seedlings of T2 generation showed higher tolerance to submergence stress after three-day submergence treatment and most T2 seedlings were recovered with normal growth when the stress was relieved for three days. However, the wild-type seedlings withered until death. After five-day submergence, the survival ratios were 26.7% for the wild type, 80.0% for transgenic line ADH33, and 66.7% for transgenic line ADH44.

Key words: Brassica napus L., Gene BnADH3, Transgenic Arabidopsis, Flood tress, Flood tolerance

[1]谭筱玉, 程勇, 郑普英, 张学昆, 周广生. 油菜湿害及耐湿性机理研究进展. 中国油料作物学报, 2011, 33: 306–310



Tan X Y, Cheng Y, Zheng P Y, Zhang X K, Zhou G S. Research progress on waterlogging resistance in rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2011, 33: 306–310 (in Chinese with English abstract)



[2]Kato-Noguchi H. Pyruvate metabolism in rice coleoptiles under anaerobiosis. Plant Growth Regul, 2006, 50: 41–46



[3]Tadege M, Dupuis I, Kuhlemeier C. Ethanolic fermentation: new functions for an old pathway. Trends Plant Sci, 1999, 4: 320–325



[4]Dennis E S, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren F U, Grover A, Ismond K P, Good A G, Peacock W J. Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot, 2000, 51: 89–97



[5]姜华武, 张祖新. 淹水对玉米根系几种酶活性的影响. 湖北农学院学报, 1999, 19: 209–211



Jiang H W, Zhang Z X. Effect of flooding on activities of several enzymes in maize roots. J Hubei Agric Coll, 1999, 19: 209–211 (in Chinese with English abstract)



[6]刘登望, 李林. 湿涝对幼苗期花生根系ADH活性与生长发育的影响及相互关系. 花生学报, 2007, 36(4): 12–17



Liu D W, Li L. The response of alcohol dehydroganase activity and development of Peanut roots to waterlogging and their relationships. J Peanut Sci, 2007, 36(4): 12–17 (in Chinese with English abstract)



[7]赵森, 陈永华, 陈昊和, 肖国樱. 荧光定量PCR检测淹涝胁迫下水稻Adh2基因的表达量变化. 中国生态农业学报, 2008, 16: 455–458



Zhao S, Chen Y H, Chen H H, Xiao G Y. Dynamic analysis of Adh2 gene of rice (Oryza sativa L.) under submergence stress using real-time quantitative PCR. Chin J Eco-Agric, 2008, 16: 455–458 (in Chinese with English abstract)



[8]Xie Y, Wu R. Rice alcohol dehydrogenase genes: anaerobic induction, organ specific expression and characterization of cDNA clones. Plant Mol Biol, 1989, 13: 53–68



[9]Andrews D L, Drew M C, Johnson J R, Cobb B G. The response of Maize seedlings of different ages to hypoxic and anoxic stress. Plant Physiol, 1994, 105: 53–60



[10]Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735–743



[11]Jefferson R A, Kayanagh T A, Bevan M W. GUS fusion: β-glucuronidase as a sensitive and versative gene fusion marker in higher plants. EMBO J, 1987, 6: 3901–3907



[12]Zhang J, Van Toai T, Huynh L, Preiszner J. Development of flooding-tolerant Arabidopsis thaliana by autoregulated cytokinin production. Mol Breed, 2000, 6: 135–144



[13]Huynh L N, VanToai T, Streeter J, Banowetz G. Regulation of flooding tolerance of SAG12:ipt Arabidopsis plants by cytokinin. J Exp Bot, 2005, 56: 1397–1407



[14]Grichko V P, Glick B R. Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S, rolD or PBR-1b promoter. Plant Physiol Biochem, 2001, 39: 19–25



[15]Farwell A J, Vesely S, Nero V, Rodriguez H, McCormack K, Shsh S, Dixon D G, Glick B R. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Pollut, 2007, 147: 540–545



[16]Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail A M, Bailey-Serres J, Ronald P C, MacKill D J. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 2006, 442: 705–708



[17]Fukao T, Xu K, Ronald P C, Bailey-Serres J. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell, 2006, 18: 2021–2034



[18]Fukao T, Bailey-Serres J. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci USA, 2008, 105: 16814–16819



[19]Licausi F, van Dongen J T, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J, 2010, 62: 302–315



[20]Kürsteiner O, Dupuis I, Kuhlemeier C. The Pyruvate decarboxylase1 gene of Arabidopsis is required during anoxia but not other environmental stresses. Plant Physiol, 2003, 132: 968–978



[21]Lasanthi-Kudahettige R, Magneschi L, Loreti E, Gonzali S, Licausi F, Novi G, Beretta O, Vitulli F, Alpi A, Perata F. Transcript profiling of the anoxic rice coleoptiles. Plant Physiol, 2007, 144: 218–231



[22]Komatsu S, Thibaut D, Hiraga S, Kato M, Chiba M, Hashiguchi A, Tougou M, Shimamura S, Yasue H. Characterization of a novel flooding stress-responsive alcohol dehydrogenase expressed in soybean roots. Plant Mol Biol, 2011, 77: 309–322



[23]Christie P J, Hahn M, Walbot V. Low-temperature accumulation of alcohol dehydrogenase1 mRNA and protein activity in maize and rice seedlings. Plant Physiol, 1991, 95: 699–706



[24]Kato-Noguchi H, Yasuda Y. Effect of low temperature on ethanolic fermentation in rice seedlings. J Plant Physiol, 2007, 164: 1013–1018



[25]Dolferus R, Jacobs M, Peacock W J, Dennis E S. Differential interaction of promoter elements in stress responses of the Arabidopsis adh gene. Plant Physiol, 1994, 105: 1075–1087



[26]Sánchez F J, Manzanares M, de Andres E F, Tenorio J L, Ayerbe L. Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Res, 1998, 59: 225–235



[27]张学昆, 范其新, 陈洁, 李加纳, 王汉中. 不同耐湿基因型甘蓝型油菜苗期对缺氧胁迫的生理差异响应. 中国农业科学, 2007, 40: 485–491



Zhang X K, Fan Q X, Chen J, Li J N, Wang H Z. Physiological reaction differences of different waterlogging-tolerant genotype rapeseed (Brassica napus L.) to anoxia. Sci Agric Sin, 2007, 40: 485–491 (in Chinese with English abstract)



[28]Jacobs M, Dolferus R, van den Bossche D. Isolation and biochemical analysis of ethyl methanesulfonate-induced alcohol dehydrogenase null mutants of Arabidopsis thaliana (L.), Heynh. Biochem Genet, 1988, 26: 105–122



[29]Johnson J R, Cobb B G, Drew M C. Hypoxic induction of anoxia tolerance in roots of Adh1 null Zea mays L. Plant Physiol, 1994, 105: 61–67



[30]Matsumura H, Takano T, Takeda G, Uchimiya H. Adh1 is transcriptionally active but its translational product is reduced in a rad mutant of rice (Oryza sativa L.), which is vulnerable to submergence stress. Theor Appl Genet, 1998, 97: 1197–1203



[31]Shiao T L, Ellis M H, Dolferus R, Dennis E S, Doran P M. Overexpression of alcohol dehydrogenase or pyruvate decarboxylase improves growth of hairy roots at reduced oxygen concentrations. Biotechnol Bioeng, 2002, 77: 455–461



[32]Ismond K P, Dolferus R, Pauw M D, Dennis E S, Good A G. Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway. Plant Physiol, 2003, 132: 1292–302



[33]Ellis M H, Millar A A, Llewellyn D J, Peacock W J, Dennis E S. Transgenic cotton (Gossypium hirsutum) over-expressing alcohol dehydrogenase shows increased ethanol fermentation but no increase in tolerance to oxygen deficiency. Aust J Plant Physiol, 2000, 27: 1041–1050

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[5] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[6] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[7] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[8] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[9] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[10] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[11] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[12] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[13] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[14] 项洪涛, 李琬, 郑殿峰, 王诗雅, 何宁, 王曼力, 杨纯杰. 幼苗期淹水胁迫及喷施烯效唑对小豆生理和产量的影响[J]. 作物学报, 2021, 47(3): 494-506.
[15] 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!