欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (04): 574-584.doi: 10.3724/SP.J.1006.2015.00574

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦候选骨干亲本科农9204遗传构成及其传递率

赵春华1,2,5,樊小莉1,2,4,王维莲3,张玮1,2,韩洁1,2,4,陈梅1,2,4,纪军1,2,崔法1,2,*,李俊明1,2,*   

  1. 1中国科学院遗传与发育生物学研究所农业资源研究中心, 河北石家庄 050022; 2植物细胞与染色体工程国家重点实验室, 北京100101; 3河北省石家庄市植物保护检疫站, 河北石家庄 050051; 4中国科学院大学, 北京 100049; 5石家庄市农林科学研究院, 河北石家庄 050041
  • 收稿日期:2014-06-27 修回日期:2014-02-06 出版日期:2015-04-12 网络出版日期:2015-02-14
  • 通讯作者: 李俊明, E-mail: ljm@sjziam.ac.cn, Tel: 0311-85887272; 崔法, E-mail: facui@sjziam.ac.cn, Tel: 0311-85887272
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB100104)和国家现代农业产业技术体系建设专项(CARS-03-03B)资助。

Genetic Composition and Its Transmissibility Analysis of Wheat Candidate Backbone Parent Kenong 9204

ZHAO Chun-Hua1,2,5,FAN Xiao-Li1,2,4,WANG Wei-Lian3,ZHANG Wei1,2,HAN Jie1,2,4,CHEN Mei1,2,4,JI Jun1,2,CUI Fa1,2,*,LI Jun-Ming1,2,*   

  1. 1 Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China;  2 State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing 100101, China; 3 Plant Protection Quarantine Station of Shijiazhuang, Shijiazhuang 050051, China; 4 University of Chinese Academy of Sciences, Beijing 100049, China; 5 Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang 050041, China
  • Received:2014-06-27 Revised:2014-02-06 Published:2015-04-12 Published online:2015-02-14
  • Contact: 李俊明, E-mail: ljm@sjziam.ac.cn, Tel: 0311-85887272; 崔法, E-mail: facui@sjziam.ac.cn, Tel: 0311-85887272

摘要:

科农9204是一个兼具高产和氮高效的候选小麦骨干亲本,其遗传背景复杂,携带冀麦38、小偃5号、绵阳75-18、小偃693和矮丰3号的遗传成分。利用221个PCR标记和89个DArT标记,绘制了科农9204的全基因组基因型图谱。在2DL上,Xmag3596Xmag4089区段与增加千粒重和籽粒含氮量的QTL紧密连锁;在4BL上,Xcnl10与增加穗粒数、降低株高和穗茎长的QTL紧密连锁;在6BS上,Xcnl113Xwmc756均与降低株高、穗茎长和穗下节间长的QTL紧密连锁。这些标记在科农9204衍生后代的传递率均为100.0%。利用已报道的关联性标记检测科农9204基因型在衍生后代的传递情况,与增加穗粒数相关的1个优异等位基因位点在衍生后代中的传递率为71.6%;与增加千粒重相关的4个优异等位基因位点的传递率均为100.0%;与根部性状相关的4个基因位点中,3个传递率为100.0%。这些与重要农艺性状相关位点,科农9204基因型在其衍生后代中有很高的传递率,在很大程度上与其对应的优异的农艺性状密不可分。科农9204染色体区段上存在的重要QTL可能是其成为候选骨干亲本的遗传基础。

关键词: 小麦, 骨干亲本, 基因型图谱, 重要染色体区段, 优异等位基因

Abstract:

Kenong 9204 (KN9204), a wheat cultivar with high yield potential and high nitrogen use efficiency (NUE), has a diverse genetic basis containing genetic materials of Jimai 38, Xiaoyan 5, Mianyang 75-18, Xiaoyan 693, and Aifeng 3. In this study, the genotypic map of KN9204 was released, which embraced 221 PCR-derived markers and 89 DArT markers. On chromosome 2DL, the region of Xmag3596Xmag4089 harbored QTLs for increasing thousand-kernel weight and grain nitrogen content. On chromosome 4BL, Xcnl10 was close to the QTLs for increasingkernel number per spike and decreasing plant height and spike exsertion. On chromosome 6BS, Xcnl113 and Xwmc756 were closely linked with QTLs for decreasing plant height, spike exsertion and peduncle length. These markers had the transmissibility of 100% in the derivatives. The transmissibility of KN9204 elite genotypes was analyzed by known associated markers. The percentages of marker transmissibility from KN9204 to its derivates were 71.6% for one locus associated with kernel number per spike, 100.0% for four loci associated with thousand-kernel weight and 100.0% for three out of four loci associated with root traits. The high transmissibility of KN9204 genotypes on these loci might attribute to the excellent agronomictraits of KN9204. The important chromosomal regions harboring QTLs for elite agronomic traits are deduced to be the genetic basis of KN9204 serving as a candidate backbone parent.

Key words: Wheat, Backbone parent, Genotypic map, Important chromosomal region, Elite alleles

[1]庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003



Zhuang Q S. Chinese wheat improvement and pedigree analysis. Beijing: China Agriculture Press, 2003 (in Chinese)



[2]张学勇, 童依平, 游光霞, 郝晨阳, 盖红梅, 王兰芬, 李滨, 董玉琛, 李振声. 选择牵连效应分析: 发掘重要基因的新思路. 中国农业科学, 2006, 39: 1526–1535



Zhang X Y, Tong Y P, You G X, Hao C Y, Ge H M, Wang L F, Li B, Dong Y C, Li Z S. Hitchhiking effect mapping: a new approach for discovering, agronomic important genes. Sci Agric Sin, 2006, 39: 1526–1535 (in Chinese with English abstract)



[3]Christopher M, Mace E, Jordan D, Rodgers D, McGowan P, Delacy I, Banks P, Sheppard J, Butler D, Poulsen D. Applications of pedigree-based genome mapping in wheat and barley breeding programs. Euphytica, 2007, 154: 307–316



[4]李小军, 徐鑫, 刘伟华, 李秀全, 李立会. 利用SSR标记探讨骨干亲本欧柔在衍生品种的遗传. 中国农业科学, 2009, 42: 3397–3404



Li X J, Xu X, Liu W H, Li X Q, Li L H. Genetic diversity of the founder parent orofen and its progenies revealed by SSR markers. Sci Agric Sin, 2009, 42: 3397–3404 (in Chinese with English abstract)



[5]韩俊, 张连松, 李静婷, 石丽娟, 解超杰, 尤明山, 杨作民, 刘广田, 孙其信, 刘志勇. 小麦骨干亲本杂交组合“胜利麦/燕大1817”及其衍生品种遗传构成解析. 作物学报, 2009, 35: 1395–1404



Han J, Zhang L S, Li J T, Shi L J, Xie C J, You M S, Yang Z M, Liu G T, Sun Q X, Liu Z Y. Molecular dissection of core parental cross “Triumph/Yanda 1817” and its derivatives in wheat breeding program. Acta Agron Sin, 2009, 35: 1395–1404 (in Chinese with English abstract)



[6]袁园园, 王庆专, 崔法, 张景涛, 杜斌, 王洪刚. 小麦骨干亲本碧蚂4号的基因组特异位点及其在衍生后代中的传递. 作物学报, 2010, 36: 9−16



Yuan Y Y, Wang Q Z, Cui F, Zhang J T, Du B, Wang H G. Specific loci in genome of wheat milestone parent Bima 4 and their transmission in derivatives. Acta Agron Sin, 2010, 36: 9−16 (in Chinese with English abstract)



[7]崔法, 赵春华, 鲍印广, 宗浩, 王玉海, 王庆庄, 杜斌, 马航运, 王洪刚. 冬小麦种质“矮孟牛”姊妹系遗传差异分析. 作物学报, 2010, 36: 1450–1456



Cui F, Zhao C H, Bao Y G, Zong H, Wang Y H, Wang Q Z, Du B, Ma H Y, Wang H G. Genetic differences in homoeologous group 1 of seven types of winter wheat Aimengniu, Acta Agron Sin, 2010, 36: 1450–1456 (in Chinese with English abstract)



[8]赵春华, 崔法, 李君, 丁安明, 李兴锋, 高居荣, 王洪刚. 冬小麦种质“矮孟牛”姊妹系遗传差异分析. 作物学报, 2011, 37: 1333–1341



Zhao C H, Cui F, Li J, Ding A M, Li X F, Gao J R, Wang H G. Genetic difference of siblines derived from winter wheat germplasm “Aimengniu”. Acta Agron Sin, 2011, 37: 1333–1341 (in Chinese with English abstract)



[9]肖永贵, 殷贵鸿, 李慧慧, 夏先春, 阎俊, 郑天存, 吉万全, 何中虎. 小麦骨干亲本“周8425B”及其衍生品种的遗传解析和抗条锈病基因定位. 中国农业科学, 2011, 44: 3919–3929



Xiao Y G, Yin G H, Li H H, Xia X C, Yan J, Zheng T C, Ji W Q, He Z H. Genetic diversity and genome-wide association analysis of stripe rust resistance among the core wheat parent Zhou 8425B and its derivatives. Sci Agric Sin, 2011, 44: 3919–3929 (in Chinese with English abstract)



[10]徐鑫, 李小军, 李秀全, 杨欣明, 刘伟华, 高爱农, 李立会. 小麦骨干亲本“洛夫林10号”1BL/1RS在衍生品种中的遗传分析. 麦类作物学报, 2010, 30: 221–226



Xu X, Li X J, Li X Q, Yang X M, Liu W H, Gao A N, Li L H. Inheritance of 1BL/1RS of founder parent Lovrin 10 in its progeny. J Triticeae Crops, 2010, 30: 221−226 (in Chinese with English abstract)



[11]贾永国, 安调过, 李俊明, 童依平, 安忠民. 不同小麦基因型孕穗期根系性状与吸氮量的关系. 华北农学报, 2006, 21: 37–40



Jia Y G, An D G, Li J M, Tong Y P, An Z M. Study on the effects of root traits on nitrogen uptake by different wheat genotypes at booting stage. Acta Agric Boreali-Sin, 2006, 21: 37–40 (in Chinese with English abstract)



[12]童依平,李继云,李振声. 不同小麦品种系吸收利用氮素效率的差异及有关机理研究:影响利用效率的因素分析. 西北植物学报, 1999, 19: 598–604



Tong Y P, Li J Y, Li Z S. Genotype variations for nitrogen use efficiency in winter wheat (Triticum aestivum L.): factors affecting utilization efficiency of nitrogen. Acta Bot Boreali-Occident Sin, 1999, 19: 598–604 (in Chinese with English abstract)



[13]Wang R F, An D G, Hu C S, Li L H, Zhang Y M, Jia Y G, Tong Y P. Relationship between nitrogen uptake and use efficiency of winter wheat grown in the North China Plain. Crop Pasture Sci, 2011, 62: 504–514



[14]Cui Z L, Zhang F S, Chen X P, Li F, Tong Y P. Using in-season nitrogen management and wheat cultivars to improve nitrogen use efficiency. Soil Fert Plant Nutr, 2011, 75: 976–983



[15]Cui F, Fan X L, Zhao C H, Zhang W, Chen M, Ji J, Li J M. A novel genetic map of wheat: utility for mapping QTL for yield under different nitrogen treatments. BMC Genetics, 2014, 15: 57



[16]Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet, 2014, 27: 659–675



[17]Wang R X, Hai L, Zhang X Y, You G X, Yan C S, Xiao S H. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai×Yu 8679. Theor Appl Genet, 2009, 118: 313–325



[18]Zhang D L, Hao C Y, Wang L F, Zhang X Y. Identifying loci influencing grain number by microsatellite screening in bread wheat (Triticum aestivum L.). Planta, 2012, 236: 1507–1517



[19]Wang L F, Ge H M, Hao C Y, Dong Y S, Zhang X Y. Identifying loci influencing 1000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PloS One, 2012, 7: 1–10



[20]Quarrie S A, Quarrie S P, Radosevic R, Rancic D, Kaminska A, Barnes J D, Leverington M, Ceoloni C, Dodig D. Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot, 2006, 57: 2627–2637



[21]Cuthbert J L, Somers D J, Brule-Babel A L, Brown P D, Crow G H. Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet, 2008, 117: 595–608



[22]Tsilo T J, Hareland G A, Simsek S, Chao S, Anderson J A. Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theor Appl Genet, 2010, 121: 717–730



[23]Huang X Q, Kempf H, Ganal M W, Röder M S. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 933–943



[24]Sun X C, Marza F, Ma H X, Carver B F, Bai G H. Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat. Theor Appl Genet, 2010, 120: 1041–1051



[25]Gupta P K, Rustig S, Kumar N. Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome, 2006, 49: 565–571



[26]Sanguineti M C, Li S, Maccaferri M, Corneti S, Rotondo F, Chiari T, Tuberosa R. Genetic dissection of seminal root architecture in elite durum wheat germplasm. Ann Appl Biol, 2007, 151: 291–305



[27]刘成, 杨足君, 冯娟, 周建平, 迟世华, 任正隆. 利用小麦微卫星引物建立簇毛麦染色体组特异性标记. 遗传, 2006, 28: 1573–1579



Liu C, Yang Z J, Feng J, Zhou J P, Chi S H, Ren Z L. Development of Dasypyrum genome specific marker by using wheat microsatellites. Hereditas (Beijing), 2006, 28: 1573–1579 (in Chinese with English abstract)



[28]Pestsova E, Röder M. Microsatellite analysis of wheat chromosome 2D allows the reconstruction of chromosomal inheritance in pedigrees of breeding programmes. Theor Appl Genet, 2002, 106: 84–91



[29]Shoemaker R C, Guffy R D, Lorenzen L L, Specht J E. Molecular genetic mapping of soybean: map utilization. Crop Sci, 1992, 32: 1091–1098



[30]李俊, 王琴, 魏会廷, 胡晓蓉, 蒲宗君, 杨武云. 太谷核不育小麦衍生材料川6415在其后代中的遗传分析. 分子植物育种, 2012, 10: 662–667



Li J, Wang Q, Wei H T, Hu X R, Pu Z J, Yang W Y. Genetic analysis of Chuan 6415 derived from Taigu nuclear male-sterility wheat in its progenies. Mol Plant Breed, 2012, 10: 662–667 (in Chinese with English abstract)

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!