作物学报 ›› 2015, Vol. 41 ›› Issue (04): 574-584.doi: 10.3724/SP.J.1006.2015.00574
赵春华1,2,5,樊小莉1,2,4,王维莲3,张玮1,2,韩洁1,2,4,陈梅1,2,4,纪军1,2,崔法1,2,*,李俊明1,2,*
ZHAO Chun-Hua1,2,5,FAN Xiao-Li1,2,4,WANG Wei-Lian3,ZHANG Wei1,2,HAN Jie1,2,4,CHEN Mei1,2,4,JI Jun1,2,CUI Fa1,2,*,LI Jun-Ming1,2,*
摘要:
科农9204是一个兼具高产和氮高效的候选小麦骨干亲本,其遗传背景复杂,携带冀麦38、小偃5号、绵阳75-18、小偃693和矮丰3号的遗传成分。利用221个PCR标记和89个DArT标记,绘制了科农9204的全基因组基因型图谱。在2DL上,Xmag3596–Xmag4089区段与增加千粒重和籽粒含氮量的QTL紧密连锁;在4BL上,Xcnl10与增加穗粒数、降低株高和穗茎长的QTL紧密连锁;在6BS上,Xcnl113和Xwmc756均与降低株高、穗茎长和穗下节间长的QTL紧密连锁。这些标记在科农9204衍生后代的传递率均为100.0%。利用已报道的关联性标记检测科农9204基因型在衍生后代的传递情况,与增加穗粒数相关的1个优异等位基因位点在衍生后代中的传递率为71.6%;与增加千粒重相关的4个优异等位基因位点的传递率均为100.0%;与根部性状相关的4个基因位点中,3个传递率为100.0%。这些与重要农艺性状相关位点,科农9204基因型在其衍生后代中有很高的传递率,在很大程度上与其对应的优异的农艺性状密不可分。科农9204染色体区段上存在的重要QTL可能是其成为候选骨干亲本的遗传基础。
[1]庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003Zhuang Q S. Chinese wheat improvement and pedigree analysis. Beijing: China Agriculture Press, 2003 (in Chinese)[2]张学勇, 童依平, 游光霞, 郝晨阳, 盖红梅, 王兰芬, 李滨, 董玉琛, 李振声. 选择牵连效应分析: 发掘重要基因的新思路. 中国农业科学, 2006, 39: 1526–1535Zhang X Y, Tong Y P, You G X, Hao C Y, Ge H M, Wang L F, Li B, Dong Y C, Li Z S. Hitchhiking effect mapping: a new approach for discovering, agronomic important genes. Sci Agric Sin, 2006, 39: 1526–1535 (in Chinese with English abstract)[3]Christopher M, Mace E, Jordan D, Rodgers D, McGowan P, Delacy I, Banks P, Sheppard J, Butler D, Poulsen D. Applications of pedigree-based genome mapping in wheat and barley breeding programs. Euphytica, 2007, 154: 307–316[4]李小军, 徐鑫, 刘伟华, 李秀全, 李立会. 利用SSR标记探讨骨干亲本欧柔在衍生品种的遗传. 中国农业科学, 2009, 42: 3397–3404Li X J, Xu X, Liu W H, Li X Q, Li L H. Genetic diversity of the founder parent orofen and its progenies revealed by SSR markers. Sci Agric Sin, 2009, 42: 3397–3404 (in Chinese with English abstract)[5]韩俊, 张连松, 李静婷, 石丽娟, 解超杰, 尤明山, 杨作民, 刘广田, 孙其信, 刘志勇. 小麦骨干亲本杂交组合“胜利麦/燕大1817”及其衍生品种遗传构成解析. 作物学报, 2009, 35: 1395–1404Han J, Zhang L S, Li J T, Shi L J, Xie C J, You M S, Yang Z M, Liu G T, Sun Q X, Liu Z Y. Molecular dissection of core parental cross “Triumph/Yanda 1817” and its derivatives in wheat breeding program. Acta Agron Sin, 2009, 35: 1395–1404 (in Chinese with English abstract)[6]袁园园, 王庆专, 崔法, 张景涛, 杜斌, 王洪刚. 小麦骨干亲本碧蚂4号的基因组特异位点及其在衍生后代中的传递. 作物学报, 2010, 36: 9−16Yuan Y Y, Wang Q Z, Cui F, Zhang J T, Du B, Wang H G. Specific loci in genome of wheat milestone parent Bima 4 and their transmission in derivatives. Acta Agron Sin, 2010, 36: 9−16 (in Chinese with English abstract)[7]崔法, 赵春华, 鲍印广, 宗浩, 王玉海, 王庆庄, 杜斌, 马航运, 王洪刚. 冬小麦种质“矮孟牛”姊妹系遗传差异分析. 作物学报, 2010, 36: 1450–1456Cui F, Zhao C H, Bao Y G, Zong H, Wang Y H, Wang Q Z, Du B, Ma H Y, Wang H G. Genetic differences in homoeologous group 1 of seven types of winter wheat Aimengniu, Acta Agron Sin, 2010, 36: 1450–1456 (in Chinese with English abstract)[8]赵春华, 崔法, 李君, 丁安明, 李兴锋, 高居荣, 王洪刚. 冬小麦种质“矮孟牛”姊妹系遗传差异分析. 作物学报, 2011, 37: 1333–1341Zhao C H, Cui F, Li J, Ding A M, Li X F, Gao J R, Wang H G. Genetic difference of siblines derived from winter wheat germplasm “Aimengniu”. Acta Agron Sin, 2011, 37: 1333–1341 (in Chinese with English abstract)[9]肖永贵, 殷贵鸿, 李慧慧, 夏先春, 阎俊, 郑天存, 吉万全, 何中虎. 小麦骨干亲本“周8425B”及其衍生品种的遗传解析和抗条锈病基因定位. 中国农业科学, 2011, 44: 3919–3929Xiao Y G, Yin G H, Li H H, Xia X C, Yan J, Zheng T C, Ji W Q, He Z H. Genetic diversity and genome-wide association analysis of stripe rust resistance among the core wheat parent Zhou 8425B and its derivatives. Sci Agric Sin, 2011, 44: 3919–3929 (in Chinese with English abstract)[10]徐鑫, 李小军, 李秀全, 杨欣明, 刘伟华, 高爱农, 李立会. 小麦骨干亲本“洛夫林10号”1BL/1RS在衍生品种中的遗传分析. 麦类作物学报, 2010, 30: 221–226Xu X, Li X J, Li X Q, Yang X M, Liu W H, Gao A N, Li L H. Inheritance of 1BL/1RS of founder parent Lovrin 10 in its progeny. J Triticeae Crops, 2010, 30: 221−226 (in Chinese with English abstract)[11]贾永国, 安调过, 李俊明, 童依平, 安忠民. 不同小麦基因型孕穗期根系性状与吸氮量的关系. 华北农学报, 2006, 21: 37–40Jia Y G, An D G, Li J M, Tong Y P, An Z M. Study on the effects of root traits on nitrogen uptake by different wheat genotypes at booting stage. Acta Agric Boreali-Sin, 2006, 21: 37–40 (in Chinese with English abstract)[12]童依平,李继云,李振声. 不同小麦品种系吸收利用氮素效率的差异及有关机理研究:影响利用效率的因素分析. 西北植物学报, 1999, 19: 598–604Tong Y P, Li J Y, Li Z S. Genotype variations for nitrogen use efficiency in winter wheat (Triticum aestivum L.): factors affecting utilization efficiency of nitrogen. Acta Bot Boreali-Occident Sin, 1999, 19: 598–604 (in Chinese with English abstract)[13]Wang R F, An D G, Hu C S, Li L H, Zhang Y M, Jia Y G, Tong Y P. Relationship between nitrogen uptake and use efficiency of winter wheat grown in the North China Plain. Crop Pasture Sci, 2011, 62: 504–514[14]Cui Z L, Zhang F S, Chen X P, Li F, Tong Y P. Using in-season nitrogen management and wheat cultivars to improve nitrogen use efficiency. Soil Fert Plant Nutr, 2011, 75: 976–983[15]Cui F, Fan X L, Zhao C H, Zhang W, Chen M, Ji J, Li J M. A novel genetic map of wheat: utility for mapping QTL for yield under different nitrogen treatments. BMC Genetics, 2014, 15: 57[16]Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet, 2014, 27: 659–675[17]Wang R X, Hai L, Zhang X Y, You G X, Yan C S, Xiao S H. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai×Yu 8679. Theor Appl Genet, 2009, 118: 313–325[18]Zhang D L, Hao C Y, Wang L F, Zhang X Y. Identifying loci influencing grain number by microsatellite screening in bread wheat (Triticum aestivum L.). Planta, 2012, 236: 1507–1517[19]Wang L F, Ge H M, Hao C Y, Dong Y S, Zhang X Y. Identifying loci influencing 1000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PloS One, 2012, 7: 1–10[20]Quarrie S A, Quarrie S P, Radosevic R, Rancic D, Kaminska A, Barnes J D, Leverington M, Ceoloni C, Dodig D. Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot, 2006, 57: 2627–2637[21]Cuthbert J L, Somers D J, Brule-Babel A L, Brown P D, Crow G H. Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet, 2008, 117: 595–608[22]Tsilo T J, Hareland G A, Simsek S, Chao S, Anderson J A. Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theor Appl Genet, 2010, 121: 717–730[23]Huang X Q, Kempf H, Ganal M W, Röder M S. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 933–943[24]Sun X C, Marza F, Ma H X, Carver B F, Bai G H. Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat. Theor Appl Genet, 2010, 120: 1041–1051[25]Gupta P K, Rustig S, Kumar N. Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome, 2006, 49: 565–571[26]Sanguineti M C, Li S, Maccaferri M, Corneti S, Rotondo F, Chiari T, Tuberosa R. Genetic dissection of seminal root architecture in elite durum wheat germplasm. Ann Appl Biol, 2007, 151: 291–305[27]刘成, 杨足君, 冯娟, 周建平, 迟世华, 任正隆. 利用小麦微卫星引物建立簇毛麦染色体组特异性标记. 遗传, 2006, 28: 1573–1579Liu C, Yang Z J, Feng J, Zhou J P, Chi S H, Ren Z L. Development of Dasypyrum genome specific marker by using wheat microsatellites. Hereditas (Beijing), 2006, 28: 1573–1579 (in Chinese with English abstract)[28]Pestsova E, Röder M. Microsatellite analysis of wheat chromosome 2D allows the reconstruction of chromosomal inheritance in pedigrees of breeding programmes. Theor Appl Genet, 2002, 106: 84–91[29]Shoemaker R C, Guffy R D, Lorenzen L L, Specht J E. Molecular genetic mapping of soybean: map utilization. Crop Sci, 1992, 32: 1091–1098[30]李俊, 王琴, 魏会廷, 胡晓蓉, 蒲宗君, 杨武云. 太谷核不育小麦衍生材料川6415在其后代中的遗传分析. 分子植物育种, 2012, 10: 662–667Li J, Wang Q, Wei H T, Hu X R, Pu Z J, Yang W Y. Genetic analysis of Chuan 6415 derived from Taigu nuclear male-sterility wheat in its progenies. Mol Plant Breed, 2012, 10: 662–667 (in Chinese with English abstract) |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[4] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[5] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[6] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[7] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[8] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[9] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[10] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[11] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[12] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[13] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[14] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
[15] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
|