欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (12): 2203-2209.doi: 10.3724/SP.J.1006.2014.02203

• 研究简报 • 上一篇    

甘蓝型油菜抗裂角材料资源的筛选

董军刚,董振生,孟倩,张博   

  1. 西北农林科技大学农学院,陕西杨凌712100
  • 收稿日期:2014-03-13 修回日期:2014-09-16 出版日期:2014-12-12 网络出版日期:2014-10-16
  • 基金资助:

    本研究由西北农林科技大学中央高校基本科研业务费项目(QN2011084)和教育部博士科研启动费(2010BSJJ031)资助。

Screening of Germplasm with Resistance to Pod Shattering in Rapeseed (Brassica napus L.)

DONG Jun-Gang,DONG Zhen-Sheng,MENG Qian,ZHANG Bo   

  1. College of Agronomy, Northwest A&F University, Yangling 712100, China
  • Received:2014-03-13 Revised:2014-09-16 Published:2014-12-12 Published online:2014-10-16

摘要:

抗裂角性是油菜机械化品种选育中的重要性状,筛选抗裂资源材料对于开展抗裂育种具有重要意义。本文应用随机碰撞法和田间落粒法,对不同来源的75份甘蓝型油菜资源进行了抗裂角性鉴定。结果表明,抗裂角性在参试材料内存在较大的遗传变异。抗裂角指数(SRI)的范围为0.01~0.70,变异系数为70.70%。田间落粒率的范围为1.58%~55.51%,变异系数为62.53%。相关分析表明,SRI值与田间落粒率相关性不明显。对于易裂和抗裂材料,2种评价方法之间的差异小,而对于抗裂性中等的材料,2种评价方法之间差异大;田间落粒率、SRI与角果皮厚度的相关系数分别为−0.429和0.687,均达显著水平。因此,角果皮厚度可作为田间筛选抗裂资源的辅助指标;利用2种方法筛选出1份抗裂性强材料Ny。Ny具有角果皮厚, 果皮表面光滑的特点。在极端落粒情况下(黄熟后2周) Ny的落粒率为7.74%,正常落粒情况下(黄熟后1周)落粒率为1.58%,其抗裂角指数(SRI)值2011年和2013年分别为0.70和0.48,高于其他材料。

关键词: 甘蓝型油菜, 抗裂角, 材料筛选

Abstract:

Shattering resistance is an important trait for rapeseed varieties suitable for mechanical harvesting, therefore screening of germplasm with pod shattering resistance is the basic work for the breeding of shattering resistance. In the present paper, we employed two methods, including random impact test (RIT) and shattering percentage test in the field, to evaluate pod shattering resistance of 75 accessions of B. napus. These accessions displayed wide variation in shattering resistance index (SRI) and shattering percentage (SP) in the field, which ranged from 0.01 to 0.70 with the variance coefficient (CV) of 70.70% for SRI, and from 1.58% to 55.51% with CV of 62.53% for SP in the field. The simple correlation analysis showed there was no correlation between pod SRI and SP in the field when all accessions included. However, for the accessions with strong or weak shattering resistance, there was no different between two methods, except for the accessions with the shattering resistance between strong and weak ones. The SP and the wall thickness of pod had significantly negative correlation (r = −0.429), pod SRI and the wall thickness of pod had significantly positive correlation (r = 0.687). Thus, the pod wall thickness can be used as an auxiliary index to screen shatter resistant germplasm. A germplasm Ny with high pod shattering resistance was identified in this study. Ny has thicker wall and smoother surface of pod. The shattering percentage of Ny was 7.74% under adverse condition (two weeks after the maturity), and 1.58% under normal condition (one week after maturity). The pod SRI of Ny was 0.70 in 2011 and 0.48 in 2013, higher than that of rest materials. Ny will be a valuable resource for rapeseed breeding for pod shattering resistance in the future.

Key words: Brassica nupus L, Pod shattering resistance, Germplasm screening

[1]周广生, 左青松, 廖庆喜, 吴江生, 傅廷栋. 我国油菜机械化生产现状、存在问题及对策. 湖北农业科学, 2013, 52: 2153–2156



Zhou G S, Zuo Q S, Liao Q X, Wu J S, Fu T D. Mechanical production status, existing problems and strategy discussion of rapeseed in China. Hubei Agric Sci, 2013, 52: 2153–2156 (in Chinese with English abstract)



[2]汤楚宙, 官春云, 吴明亮, 罗海峰. 油菜机械化生产中农艺与农机相结合的探索与实践. 湖南农业大学学报(自然科学版), 2011, 37: 674–677



Tang C Z, Guan C Y, Wu M L, Luo H F. Exploration and application of the integration of agronomy and mechanization in rapeseed production. J Hunan Agric Univ (Nat Sci), 2011, 37(6): 674–677 (in Chinese with English abstract)



[3]Morgan C L, Ladbrooke Z L, Bruce D M. Breeding oilseed rape for pod shattering resistance. J Agric Sci, 2000, 135: 347–359



[4]Hossain S, Kadkol G P, Raman R, Salisbury P A, Raman H. Breeding Brassica napus for shatter resistance. Plant Breed, 2012, InTech, Available online: http://www.intechopen.com/books/plant-breeding



[5]Rameeh V. Evaluation of different spring rapeseed (Brassica napus L.) genotypes for shattering tolerance. J Oilseed Brassica, 2013, 4: 19–24



[6]Morgan C L, Bruce D M, Child R, Ladbrooke Z L, Arthur A E. Genetic variation for pod shatter resistance among lines of oilseed rape developed from synthetic B. napus. Field Crops Res, 1998, 58: 153–165



[7]Wang R, Ripley V L, Rakow G. Pod shatter resistance evaluation in cultivars and breeding lines of Brassica napus, B. juncea and Sinapis alba. Plant Breed, 2007, 126: 588–595



[8]Gan Y, Malhi S S, Brandt S A, McDonald C L. Assessment of seed shattering resistance and yield loss in five oilseed crops. Can. J Plant Sci, 2008, 88: 267–270



[9]Pahkala K. Seed loss as result of pod shatter in spring rape and spring turnip rape in Finland. Agric Food Sci Finland, 2001, 10: 209–216



[10]Kadkol G P, MacMillan R H, Burrow R P, HalloranG M. Evaluation of Brassica genotypes for resistance to shatter. I. Development of a laboratory test. Euphytica, 1984, 33: 63–73



[11]Liu X Y, Macmillan R H, Burrow R P, Kadkol G P, Halloran G M. Pendulum test for evaluation of the rupture strength of seed pods. J Texture Studies, 1994, 25: 179–189



[12]Bruce D M, Farrent J W, Morgan C L, Child R D. Determining the oilseed rape pod strength needed to reduce seed loss due to pod shatter. Biosystems Engin, 2002, 81: 179–184



[13]Tan X L, Zhang J F, Zhang Z Y, Zhou J, Jiang S, Qi C K. Quantitative Determination of the Strength of Rapeseed Pod Dehiscence. Proceedings of the 12th International Rapeseed Congress, Wuhan, China. 2007. pp 280–283



[14]李耀明, 朱俊奇, 徐立章, 赵湛. 基于悬空压裂法的油菜角果抗裂角力测试试验. 农业工程学报, 2012, 28(8): 111–115



Li Y M, Zhu Z Q, Xu L Z, Zhao Z. Experiment on strength of rapeseed pod dehiscence based on impending fracturing method. Transact Chin Soc Agric Engin, 2012, 28(8): 111–115



[15]Summers J E, Bruce D M, Vancanneyt G, Redig P, Werner C P, Morgan C, Child R D. Pod shatter resistance in the resynthesised Brassica napus line DK142. J Agric Sci, 2003, 140: 43–52



[16]彭鹏飞, 李云昌, 胡琼. 甘蓝型油菜的抗裂角性鉴定及品种筛选. 华北农学报, 2009, 24(6): 223–226



Peng P F, Li Y C, Hu Q. Screen of varieties suitable for machine harvesting from new breeding hybrids or lines in Brassica napus. Acta Agric Boreali-Sin, 2009, 24(6): 223–226 (in Chinese with English abstract)



[17]Hu Z, Hua W, Huang S, Yang H, Zhan G, Wang X , Liu G, Wang H. Discovery of pod shatter-resistant associated SNPs by deep sequencing of a representative library followed by bulk segregant analysis in rapeseed. PLoS One, 2012, 7(4): DOI: 10.1371/journal.pone.0034253



[18]文雁成, 傅廷栋, 涂金星, 马朝芝, 沈金雄, 张书芬. 甘蓝型油菜抗裂角品种(系)的筛选与分析. 作物学报, 2008, 34: 163–166



Wen Y C, Fu T D, Tu J X, Ma C Z, Shen J X, Zhang S F. Screening and analysis of resistance to silique shattering in rape (Brassica napus L.). Acta Agron Sin, 2008, 34: 163–166 (in Chinese with English abstract)



[19]浦惠明, 龙卫华, 高建芹, 胡茂龙. 甘蓝型油菜角果的抗裂角特性及其相关分析. 中国油料作物学报, 2013, 35: 469–475



Pu H M, Long W H, Gao J Q, Hu M L. Silique shatter resistance and correlation analysis in Brassica napus. Chin J Oil Crop Sci, 2013, 35: 469–475 (in Chinese with English abstract)



[20]Agnihotri A, Shivanna K R, Raina S N, Lakshmikumaran M, Prakash S, Jagannnathan V. Production of Brassica napus × Raphanobrassica hybrids by embryo rescue: an attempt to introduce shattering resistance into B. napus. Plant Breed, 1990, 105: 292–299



[21]Banga S, Kaur G, Grewal N, Salisbury P A, Banga S S .Transfer of resistance to seed shattering from Brassica×carinata to B. napus. 13th International Rapeseed Congress, 2011, Prague, Czhech Republic, pp 863–865



[22]Prakash S, Chopra VL. Introgression of resistance to shattering in Brassica napus from Brassica juncea through non-homologous recombination. Plant Breed, 1988, 101: 167–168

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[5] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[6] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[7] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[8] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[9] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[10] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[11] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[12] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[13] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[14] 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274.
[15] 李倩, Nadil Shah, 周元委, 侯照科, 龚建芳, 刘珏, 尚政伟, 张磊, 战宗祥, 常海滨, 傅廷栋, 朴钟云, 张椿雨. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报, 2021, 47(2): 210-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!