欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (02): 175-186.doi: 10.3724/SP.J.1006.2015.00175

• 综述 •    下一篇

论植物表型组和植物表型组学的概念与范畴

潘映红   

  1. 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程,北京 100081
  • 收稿日期:2014-06-13 修回日期:2014-11-05 出版日期:2015-02-12 网络出版日期:2014-11-18
  • 基金资助:

    本研究由中国农业科学院科技创新工程项目(作物分子标记技术及其应用科研创新团队)资助。

Analysis of Concepts and Categories of Plant Phenome and Phenomics

PAN Ying-Hong   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences / National Key Facility for Gene Resources and Genetic Improvement, Beijing 100081, China
  • Received:2014-06-13 Revised:2014-11-05 Published:2015-02-12 Published online:2014-11-18

摘要:

植物表型分析是理解植物基因功能及环境效应的关键环节,随着植物功能基因组学和作物分子育种研究的深入,传统的表型观测已经成为制约其发展的主要瓶颈,而高通量的植物表型组分析技术和植物表型组学研究是解决这一困境的有效途径。虽然植物表型组分析正在成为国内外研究的热点,相关概念仍然较为模糊,阻碍了这一新兴学科的发展。本文分析了植物表型组和植物表型组学的相关概念和范畴,引入了准表型组、可辨识性状、映射性状、植物表型的遗传和环境包容性等新概念,将植物表型组定义为“受基因组和环境因素决定或影响的,反映植物结构及组成、植物生长发育过程及结果的全部物理、生理、生化特征和性状”,将植物表型组学定义为“对植物表型组信息及相关环境参数的综合控制、完整采集和系统分析”,并提出了植物表型组学的研究范围、研究方向和顶层设计原则。

关键词: 表型组, 表型组学, 植物, 概念, 范畴

Abstract:

Plant phenotyping is a key link in understanding gene function and environmental effects, and with development of plant function genomics and crop molecular breeding, the traditional phenotypic observation has become the main bottleneck. High-throughput plant phenome analysis technology and plant phenomics study is an effective way to solve this problem. Although plant phenome analysis is becoming a hot spot at home and abroad, relevant concepts are still relatively fuzzy, and this situation hinders the development of this emerging discipline. In this paper, the relevant concepts and categories of plant phenome and plant phenomics were analyzed, and the new concepts such as quasi-phenome, identifiable traits, mapped traits, and tolerance of plant phenotype to the changes of inheritance and environment, were introduced. And, plant phenome was defined as “all of physical, physiological and biochemical characteristics and traits which are decided or influenced by genome and environments, and can reflect the plant structures and compositions, or reflect the processes and results of plant growth and development”, and plant phenomics as “the comprehensive controls, complete collections and systematic analyses of plant phenome informations and related environmental parameters”. The scopes, directions, and top design principles of plant phenomics research, were also discussed.

Key words: Phenome, Phenomics, Plant, Concept, Category

[1]Schork N J. Genetics of complex disease—Approaches, problems, and solutions. Am J Resp Crit Care, 1997, 156: S103–S109

[2]Davis B D. The isolation of biochemically deficient mutants of bacteria by means of Penicillin. Proc Natl Acad Sci USA, 1949, 35: 1–10

[3]Soule M. Phenetics of natural populations I. Phenetic relationships of insular populations of the side-blotched lizard. Evolution, 1967, 21: 584–591

[4]Conrad M, Rizki M M. The artificial worlds approach to emergent evolution. BioSystems, 1989, 23: 247–258

[5]Mahner M, Kary M. What exactly are genomes, genotypes and phenotypes? And what about phenomes? J Theor Biol, 1997, 186: 55–63

[6]Varki A, Wills C, Perlmutter D, Woodruff D, Gage F, Moore J, Semendeferi K, Bernirschke K, Katzman R, Doolittle R. Great ape phenome project? Science, 1998, 282: 239–240

[7]Strohman R C. Linear genetics, non-linear epigenetics: complementary approaches to understanding complex diseases. Integr Phys Beh Sci, 1995, 30: 273–282

[8]Dulbecco R. A turning point in cancer research: sequencing the human genome. Science, 1986, 231: 1055–1056

[9]Schilling C H, Edwards J S, Palsson B O. Toward metabolic phenomics: analysis of genomic data using flux balances. Biotechnol Prog, 1999, 15: 288–295

[10]Kelsoe J R, Niculescu A B. Finding genes for bipolar disorder in the functional genomics era: from convergent functional genomics to phenomics and back. CNS Spectr, 2002, 7: 215–226 

[11]Bader G D, Heilbut A, Andrews B, Tyers M, Hughes T, Boone C. Functional genomics and proteomics: charting a multidimensional map of the yeast cell. Trends Cell Biol, 2003, 13: 344–356

[12]Sauer U. High-throughput phenomics: experimental methods for mapping fluxomes. Curr Opin Biotech, 2004, 15: 58–63

[13]Joy T, Hegele R A. Genetics of metabolic syndrome: is there a role for phenomics? Curr Atheroscler Rep, 2008, 10: 201–208

[14]Whiteley A R, Derome N, Rogers S M, St-Cyr J, Laroche J, Labbe A, Nolte A, Renaut S, Jeukens J, Bernatchez L. The phenomics and expression quantitative trait locus mapping of brain transcriptomes regulating adaptive divergence in lake whitefish species pairs (Coregonus sp.). Genetics, 2008, 180: 147–164

[15]Bilder R M, Sabb F W, Cannon T D, London E D, Jentsch J D, Parker D S, Poldrack R A, Evans CFreimer N B. Phenomics: the systematic study of phenotypes on a genome-wide scale. Neuroscience, 2009, 164: 30–42

[16]Lanktree M B, Hassell R G, Lahiry P, Hegele R A. Phenomics: expanding the role of clinical evaluation in genomic studies. J Invest Med, 2010, 58: 700–706

[17]Houle D, Govindaraju D R, Omholt S. Phenomics: the next challenge. Nat Rev Genet, 2010, 11: 855–866

[18]Maddatu T P, Grubb S C, Bult C J, Bogue M A. Mouse phe-nome database (MPD). Nucl Acids Res, 2012, 40(D1): D887–D894

[19]Yang L, Wei G, Tang K, Nardini C, Han J D. Understanding human diseases with high-throughput quantitative measurement and analysis of molecular signatures. Sci China Life Sci, 2013, 56: 213–219

[20]Weckwerth W, Kahl G. The Handbook of Plant Metabolomics. Weinheim: Wiley-Blackwell Press, 2013. pp 1–100

[21]Hancock J M. Introduction to “Phenomics”. In: Hancock J M, ed. Phenomics. Boca Raton: CRC Press, 2014. pp 1–7

[22]Pieruschka R, Poorter H. Phenotyping plants: genes, phenes and machines Introduction. Funct Plant Biol, 2012, 39: 813–820

[23]Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327: 818–822

[24]Yang W, Duan L, Chen G, Xiong L, Liu Q. Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Curr Opin Plant Biol, 2013, 16: 180–187

[25]Dhondt S, Wuyts N, Inze D. Cell to whole-plant phenotyping: the best is yet to come. Trends Plant Sci, 2013, 18: 433–444

[26]White J W, Andrade-Sanchez P, Gore M A, Bronson K F, Coffelt T A, Conley M M, Feldmann K A, French A N, Heun J T, Hunsaker D J, Jenks M A, Kimball B A, Roth R L, Strand R J, Thorp K R, Wall G W, Wang G Y. Field-based phenomics for plant genetics research. Field Crops Res, 2012, 133: 101–112

[27]Johannsen W. The genotype conception of heredity. Am Nat, 1911, 45: 129–159

[28]Baylin S B, Gazdar A F, Minna J D, Bernal S D, Shaper J H. A unique cell-surface protein phenotype distinguishes human small-cell from non-small-cell lung cancer. Proc Natl Acad Sci USA, 1982, 79: 4650–4654

[29]Jimenez-Marin D, Dessauer H C. Protein phenotype variation in laboratory populations of Rattus norvegicus. Comp Bio-chem Phys B: Comp Biochem, 1973, 46: 487-488

[30]Pringle C, Duncan I, Stevenson M. Isolation and characteri-zation of temperature-sensitive mutants of vesicular stomatitis virus, New Jersey serotype. J Virol, 1971, 8: 836–841

[31]Frey T K, Youngner J S. Novel phenotype of RNA synthesis expressed by vesicular stomatitis virus isolated from persistent infection. J Virol, 1982, 44: 167–174

[32]Parsons P. The behavioral phenotype in mice. Am Nat, 1974, 108: 377–385

[33]De C B, Lefebvre V, Nakashima K. Regulatory mechanisms in the pathways of cartilage and bone formation. Curr Opin Cell Biol, 2001, 13: 721–728

[34]Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, Godde M, Uhl R, Palme K. Bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell, 2001, 13: 351–367

[35]Okusu H, Ma DNikaido H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol, 1996, 178: 306–308

[36]Fiorani F, Schurr U. Future scenarios for plant phenotyping. Annu Rev Plant Biol, 2013, 64: 267–291

[37]Geissler T, Wessjohann L A. A whole-plant microtiter plate assay for drought stress tolerance-inducing effects. J Plant Growth Regul, 2011, 30: 504–511

[38]Appels R. Plant phenome to genome: a mini-review. Funct Plant Biol, 2012, 39: 3–8

[39]Poorter H, Niinemets U, Walter A, Fiorani F, Schurr U. A method to construct dose-response curves for a wide range of environmental factors and plant traits by means of a meta-analysis of phenotypic data. J Exp Bot, 2010, 61: 2043–2055

[40]Cobb J N, DeClerck G, Greenberg A, Clark R, McCouch S. Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet, 2013, 126: 867–887

[41]Brown T B, Cheng R, Sirault X R, Rungrat T, Murray K D, Trtilek M, Furbank R T, Badger M, Pogson B J, Borevitz J O. TraitCapture: genomic and environment modelling of plant phenomic data. Curr Opin Plant Biol, 2014, 18: 73–79

[42]Rengel D, Arribat S, Maury P, Martin-Magniette M L, Hourlier T, Laporte M, Vares D, Carrere S, Grieu P, Balzergue S, Gouzy J, Vincourt P, Langlade N B. A gene-phenotype network based on genetic variability for drought responses reveals key physiological processes in controlled and natural environments. PloS One, 2012, 7: e45249

[43]Zamir D. Where have all the crop phenotypes gone? PloS Biol, 2013, 11: e1001595

[44]Kohler S, Doelken S C, Mungall C J, Bauer S, Firth H V, Bailleul-Forestier I, Black G C M, Brown D L, Brudno M, Campbell J, FitzPatrick D R, Eppig J T, Jackson A P, Freson K, Girdea M, Helbig I, Hurst J A, Jahn J, Jackson L G, Kelly A M, Ledbetter D H, Mansour S, Martin C L, Moss C, Mumford A, Ouwehand W H, Park S M, Riggs E R, Scott R H, Sisodiya S, Van Vooren S, Wapner R J, Wilkie A O M, Wright C F, Vulto-van Silfhout A T, de Leeuw N, de Vries B B A, Washingthon N L, Smith C L, Westerfield M, Schofield P, Ruef B J, Gkoutos G V, Haendel M, Smedley D, Lewis S E, Robinson P N. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucl Acids Res, 2014, 42(D1): D966–D974

[45]Mungall C J, Gkoutos G V, Smith C L, Haendel M A, Lewis S E, Ashburner M. Integrating phenotype ontologies across multiple species. Genome Biol, 2010, 11: R2

[46]Hu H, Zhang J Z, Sun X Y, Zhang X M. Estimation of leaf chlorophyll content of rice using image color analysis. Can J Remote Sens, 2013, 39: 185–190

[47]Rousseau C, Belin E, Bove E, Rousseau D, Fabre F, Berruyer R, Guillaumes J, Manceau C, Jacques M A, Boureau T. High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. Plant Methods, 2013, 9: 17

[48]Feher-Juhasz E, Majer P, Sass L, Lantos C, Csiszar J, Turoczy Z, Mihaly R, Mai A, Horvath G V, Vass I, Dudits D, Pauk J. Phenotyping shows improved physiological traits and seed yield of transgenic wheat plants expressing the alfalfa aldose reductase under permanent drought stress. Acta Physiol Plant, 2014, 36: 663–673

[49]Matsuda O, Tanaka A, Fujita T, Iba K. Hyperspectral imaging techniques for rapid identification of Arabidopsis mutants with altered leaf pigment status. Plant Cell Physiol, 2012, 53: 1154–1170

[50]De S N. Machines learn phenotypes. Nat Methods, 2013, 10: 38–38

[1] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[2] 王渭霞, 赖凤香, 胡海燕, 何佳春, 魏琪, 万品俊, 傅强. 超低温11年保存期对转基因作物基体标准样品核酸检测的影响[J]. 作物学报, 2022, 48(1): 238-248.
[3] 罗凯, 谢琛, 汪锦, 王甜, 何舜, 雍太文, 杨文钰. 外源喷施植物生长调节剂对套作大豆碳氮代谢和花荚脱落的影响[J]. 作物学报, 2021, 47(4): 752-760.
[4] 王建伟,贺晓岚,李文旭,陈新宏. 小麦近缘属植物1-FFT基因的克隆及功能分析[J]. 作物学报, 2018, 44(6): 814-823.
[5] 程伟,李和平,何水林,廖玉才. 寄主诱导的基因沉默提高植物真菌病害抗性研究进展[J]. 作物学报, 2017, 43(08): 1115-1121.
[6] 张小萌,刘松江,龚文芳,孙君灵,庞保印,杜雄明. 植物生长调节剂对彩色棉胚珠离体培养纤维发育的影响[J]. 作物学报, 2017, 43(05): 763-776.
[7] 王莎,贺勇,罗光宇,姚敏,张旭,陈信波,周小云. OsWR2-RNAi对水稻角质层生物合成和耐旱性的影响[J]. 作物学报, 2017, 43(03): 315-323.
[8] 李长宁,谢金兰,王维赞,梁强,李毅杰,董文斌,刘晓燕,杨丽涛,李杨瑞. 水分胁迫下甘蔗差异表达基因筛选及激素相关基因分析[J]. 作物学报, 2015, 41(07): 1127-1135.
[9] 任琴,王亚军,郭志鸿,李继平,谢忠奎,王若愚,王立,惠娜娜. 植物介导的RNA干扰引起马铃薯晚疫病菌基因的沉默[J]. 作物学报, 2015, 41(06): 881-888.
[10] 吴林坤,黄伟民,王娟英,吴红淼,陈军,秦贤金,张重义,林文雄. 不同连作年限野生地黄根际土壤微生物群落多样性分析[J]. 作物学报, 2015, 41(02): 308-317.
[11] 王诺菡,于霁雯,吴嫚,马启峰,李兴丽,裴文锋,李海晶,黄双领,张金发,喻树迅. 棉花GhMYB0基因的克隆、表达分析及功能鉴定[J]. 作物学报, 2014, 40(09): 1540-1548.
[12] 秦舒浩,曹莉,张俊莲,师尚礼,王蒂. 轮作豆科植物对马铃薯连作田土壤速效养分及理化性质的影响[J]. 作物学报, 2014, 40(08): 1452-1458.
[13] 徐恒恒,黎妮,刘树君,王伟青,王伟平,张红,程红焱,宋松泉. 种子萌发及其调控的研究进展[J]. 作物学报, 2014, 40(07): 1141-1156.
[14] 刘长友,范保杰,曹志敏,苏秋竹,王彦,张志肖,程须珍,田静. 利用SSR标记分析野生小豆及其近缘野生植物的遗传多样性[J]. 作物学报, 2014, 40(01): 174-180.
[15] 蔡铁,徐海成,尹燕枰,杨卫兵,彭佃亮,倪英丽,徐彩龙,杨东清,王振林. 外源IAA、GA3和ABA影响不同穗型小麦分蘖发生的机制[J]. 作物学报, 2013, 39(10): 1835-1842.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!