欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (02): 187-196.doi: 10.3724/SP.J.1006.2015.00187

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆籽粒维生素E含量的QTL分析

张红梅1,李海朝2,文自翔2,顾和平1,袁星星1,陈华涛1,崔晓艳1,陈新1,*,卢为国2,*   

  1. 1江苏省农业科学院蔬菜研究所,江苏南京 210014;2河南省农业科学院经济作物研究所 / 国家大豆改良中心郑州分中心 / 农业部黄淮海油料作物遗传育种重点实验室,河南郑州 450002
  • 收稿日期:2014-06-25 修回日期:2014-12-19 出版日期:2015-02-12 网络出版日期:2014-12-29
  • 通讯作者: 陈新, E-mail: cx@jaas.ac.cn, Tel: 025-84391362; 卢为国, E-mail: 123bean@163.com, Tel. 0371-65733647
  • 基金资助:

    本研究由国家自然科学基金项目(30771360),江苏省农业自主创新基金项目[cx(13)4070]和江苏省科技支撑计划项目(BE2013379)资助。

Identification of QTL Associated with Vitamin E Content in Soybean Seeds

ZHANG Hong-Mei1,LI Hai-Chao2,WEN Zi-Xiang2,GU He-Ping1,YUAN Xing-Xing1,CHEN Hua-Tao1,CUI Xiao-Yan1,CHEN Xin1,*,LU Wei-Guo2,*   

  1. 1 Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; 2 Institute of Industrial Crops, Henan Academy of Agricultural Scienecs / Zhengzhou Subcenter of National Center for Soybean Improvement / Key laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture, Zhengzhou 450002, China
  • Received:2014-06-25 Revised:2014-12-19 Published:2015-02-12 Published online:2014-12-29
  • Contact: 陈新, E-mail: cx@jaas.ac.cn, Tel: 025-84391362; 卢为国, E-mail: 123bean@163.com, Tel. 0371-65733647

摘要:

维生素E (VE)具有提高人体免疫力、抗癌、预防心血管疾病等保健作用,从大豆中提取的VE安全性更高。本研究采用高效液相色谱技术(HPLC)检测大豆BIEX群体(Essex×ZDD2315)维生素E的α-生育酚、γ-生育酚和δ-生育酚含量。应用QTLNetwork 2.1软件分别检测到8个和12对控制大豆维生素E及组分含量的加性和互作QTL。α-生育酚含量加性和互作QTL累计贡献值分别为8.68% (2个)和15.57% (4对),γ-生育酚含量加性和互作QTL累计贡献值分别为8.59% (2个)和11.57% (2对),δ-生育酚含量加性和互作QTL累计贡献值分别为5.44% (1个)和17.61% (3对),维生素E总含量的加性和互作QTL累计贡献值分别为11.39% (3个)和9.48% (3对)。未检测到维生素E及组分含量和环境互作的QTL。未定位到的微效QTL累计贡献值为66.16%~75.32%,说明未定位到的微效基因的变异占2/3以上。各性状的遗传构成中,未检测出的微效QTL份额最大,加性QTL和互作QTL贡献相差不大。在育种中应考虑常规方法聚合微效QTL与标记辅助方法聚合主要QTL相结合。

关键词: 大豆, 籽粒, 维生素E含量, QTL定位

Abstract:

Vitamin E has effects on human immunity, anti-cancer and prevention of cardiovascular disease. Vitamin E from soybean has the advantages of higher security and higher human body absorption rate. The objective of the present study was to map the additive,additive × additive (epistasis), additive × year and epistasis × year QTLs for vitamin E and relative tocopherol contents with the RIL population BIEX (Essex×ZDD2315) using HPLC (high performance liquid chromatography) method and software QTLNetwork 2.1. Eight additive QTLs and twelve additive × additive (epistasis) QTLs were detected for vitamin E and relative tocopherol contents. The contributions to the phenotypic variances of additive QTL and epistatic QTL pairs were 8.68% (two QTLs) and 15.57% (four pairs) for α- tocopherol, 8.59% (two QTL) and 11.57% (two pairs) for γ-tocopherol, 5.44% (one QTL) and 17.61% (three pairs) for δ-tocopherol and 11.39% (three QTL) and 9.48% (three pairs) for total vitamin E contents, respectively. Those of additive and epistatic QTLs by year interaction were not found. The accumulated contribution of the unmapped minor QTLs was 66.16%–75.32%, indicating the variance of unmapped minor QTLs accounting for more than two thirds. In genetic composition, undetected minor QTLs accounted for a considerably large part additive QTLs and epistatic QTLs were nearly equal in α-tocopherol, γ-tocopherol, δ-tocopherol and total vitamin E contents. Accordingly, in breeding for vitamin E contents, the strategy of pyramiding multiple QTLs, both additive and epistatic, by using marker-assisted selection combined with accumulating minor effect QTLs through conversional procedures should be considered.

Key words: Soybean [Glycine max (L.) Merr.], Seed, Vitamin E content, QTL mapping

[1]Rimbach G, Moehring J, Huebbe P. Gene-regulatory activity of alpha-tocopherol. Molecules, 2010, 15: 1746–1761

[2]Hincha D K. Effects of α-tocopherol (vitamin E) on the stability and lipid dynamics of model membranes mimicking the lipid composition of plant chloroplast membranes. FEBS Lett, 2008, 582: 3687–3692

[3]Abbasi A R, Hajirezaei M, Hofius D, Sonnewald U, Voll L M. Specific roles of α- and γ-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol, 2007, 143: 1720–1738

[4]Prasad K N, Kumar A, Kochupillai V, Cole W C. High doses of multiple antioxidant vitamins: essential ingredients in improving the efficiency of standard cancer therapy. J Am Coll Nutr, 1999, 18: 13–25

[5]Bramley P M, Elmadfa I, Kafatos A, Kelly F J, Manios Y, Roxborough H E, Schuch W, Sheehy P J A, Wagner K H, 2000: Vitamin E. J Sci Food Agric, 2000, 80: 913–938

[6]Kanwischer M, Porfirova S, Bergmuller E, D?rmann P. Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol, 2005, 137: 713–723

[7]米歇尔?琼斯, 田颖. 天然维生素E. 日用化学品科学, 2002, (4): 47–48

Michelle J, Tian Y. Naturals vitamin E. Deterg Cosmet, 2002, (4): 47–48 (in Chinese with English abstract)

[8]Ujiie A, Yamada T, Fujimoto K, Endo Y, Kitamura K. Identification of soybean varieties with high α-tocopherol content. Breed Sci, 2005, 55: 123–125

[9]李卫东, 卢为国, 梁慧珍, 王树峰, 苑保军, 耿臻, 王素阁, 范彦英, 刘亚非, 王令涛. 大豆籽粒维生素E含量与生态因子关系的研究. 作物学报, 2007, 33: 1094–1099

Li W D, Lu W G, Liang H Z, Wang S F, Yuan B J, Geng Z, Wang S G, Fan Y Y, Liu Y F, Wang L T. Effects of eco-physiological factors on vitamin E content in soybean seed. Acta Agron Sin, 2007, 33: 1094–1099 (in Chinese with English abstract)

[10]Dwiyanti M S, Ujiie A, Thuy L T B, Yamda T, Kitamura K. Genetic analysis of high α-tocopherol content in soybean seeds. Breed Sci, 2007, 57: 23–28

[11]Li H Y, Liu H C, Han Y P, Wu X X, Teng W L, Liu G F, Li W B. Identification of QTL underlying vitamin E contents in soybean seed among multiple environments. Theor Appl Genet, 2010, 120: 1405–1413

[12]Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122–128

[13]王宇峰. 大豆基因组SSR分布特征和高密度遗传图谱的构建、整合与应用. 南京农业大学博士学位论文, 江苏南京, 2009

Wang Y F. Genomic Characterization of Simple Sequence Repeats and Establishment, Integration and Application of High Density Genetic Linkage Map in Soybean. PhD Dissertation of Nanjing Agricultural University, Jiangsu, China, 2009 (in Chinese with English abstract)

[14]Yang J, Zhu J, Williams R W. Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics, 2007, 23: 1527–1536

[15]Piepho H P, Gauch H G J. Marker pair selection for mapping quantitative trait loci. Genetics, 2001, 157: 433–444

[16]Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963–971

[17]Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5. North Carolina State University, Raleigh, NC, USA, 2001–2006

[18]Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361–374

[19]邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析. 作物学报, 2008, 34: 361–368

Xing G N, Zhou B, Zhao T J, Yu D Y, Xing H. Chen S Y, Gai J Y. Mapping QTLs of resistance to Megacota cribraria (Fabricius) in soybean. Acta Agron Sin, 2008, 34: 361–368 (in Chinese with English abstract)

[20]Chantret N, Mingeot D, Sourdille P, Bernard M, Jacquemin J M, Doussinault G. A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat. Theor Appl Genet, 2001, 103: 962–971

[21]Symonds V V, Godoy A V, Alconada T, Botto J F, Juenger T E, Casal J J, Lloyd A M. Mapping quantitative trait loci in multiple populations of Arabidopsis thaliana identifies natural allelic variation for trichome density. Genetics, 2005, 169: 1649–1658

[22]Tucker D M, Griffey C A, Liu S, Brown-Guedira G, Marshall D S, Saghai Maroof M A. Confirmation of three quantitative trait loci conferring adult plant resistance to powdery mildew in two winter wheat populations. Euphytica, 2007, 155: 1–13

[23]李广军, 李河南, 程利国, 章元明. 大豆叶绿素含量动态表达的QTL分析. 作物学报, 2010, 36: 242–248

Li G J, Li H N, Cheng L G, Zhang Y M. QTL analysis for dynamic expression of chlorophyll content in soybean. Acta Agron Sin, 2010, 36: 242–248

[24]Rossi M E, Orf J H, Liu L J, Dong Z, Rajcan I. Genetic basis of soybean adaptation to North American vs. Asian mega-environments in two independent populations from Canadian × Chinese crosses. Theor Appl Genet, 2013, 126: 1809–1823

[25]Palomeque L, Li J L, Li W, Hedges B, Cober E R, Rajcan I. QTL in mega-environments: II. Agronomic trait QTL co-localized with seed yield QTL detected in a population derived from a cross of high-yielding adapted x high-yielding exotic soybean lines. Theor Appl Genet, 2009, 119: 429–436

[26]Han Y, Li D, Zhu D, Li H, Li X, Teng W, Li W. QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet, 2012, 125: 671–683

[27]Fasoula, Vasilia A, Harris, Donna K, Boerma H R. Validation and designation of quantitative trait loci for seed protein, seed oil, and seed weight from two soybean populations. Crop Sci, 2004, 44: 1218–1225

[28]Korir P, Qi B, Wang Y, Zhao T, Yu D, Chen S, Gai J. A study on relative importance of additive, epistasis and unmapped QTL for aluminum tolerance at seedling stage in soybean. Plant Breed, 2011, 130: 551–562

[29]Della P D. Progress in the dissection and manipulation of vitamin E synthesis. Trends Plant Sci, 2005, 10: 574–579

[30]Shintani D, Della P D. Elevating the vitamin E content of plants through metabolic engineering. Science, 1998, 282: 2098–2100

[31]Venkatesh T V, Karunanandaa B, Free D L, Rottnek J M, Baszis S R, Valentin H E. Identification and characterization of an Arabidopsis homogentisate phytyltransferase paralog. Planta, 2006, 223: 1134–1144

[32]李灵娟. 甘蓝型油菜基因组中控制种子维生素E含量QTL的检测和分析. 华中农业大学硕士学位论文, 湖北武汉, 2008

Li L J. Identification and Analysis of QTL Controlling Seed Tocopherol Content in the Genome of Brassica napus L. MS Thesis of Huazhong Agricultural University, Hubei, China, 2008 (in Chinese with English abstract)

[1] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[4] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[5] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[6] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[7] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[8] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[9] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[10] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[15] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!