欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (03): 394-404.doi: 10.3724/SP.J.1006.2015.00394

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

亚洲棉和雷蒙德氏棉PEBP家族基因的鉴定及该家族基因在陆地棉组织中表达分析

李超1,张彦楠1,刘焕龙1,黄先忠1,2,*   

  1. 1 石河子大学生命科学学院 / 农业生物技术重点实验室,新疆石河子 832003; 2 Plant Genome Mapping Laboratory, University of Georgia, Athens 30605, GA, USA
  • 收稿日期:2014-09-10 修回日期:2014-12-19 出版日期:2015-03-12 网络出版日期:2015-01-12
  • 通讯作者: 黄先忠, E-mail: xianzhongh106@163.com, Tel: 0993-2057262
  • 基金资助:

    本研究由国家自然科学基金项目(31360366), 新世纪优秀人才支持计划项目(NCET-12-1072)和新疆生产建设兵团博士基金项目(2012BB007)资助。

Identification of PEBP Gene Family in Gossypium arboreum and Gossypium raimondii and Expression Analysis of the Gene family in Gossypium hirsutum

LI Chao1,ZHANG Yan-Nan1,LIU Huan-Long1,HUANG Xian-Zhong1,2,*   

  1. 1 Key Laboratory of Agrobiotechnology / College of Life Sciences, Shihezi University, Shihezi 832003, China; 2 Plant Genome Mapping Laboratory, University of Georgia, Athens 30605, GA, USA
  • Received:2014-09-10 Revised:2014-12-19 Published:2015-03-12 Published online:2015-01-12
  • Contact: 黄先忠, E-mail: xianzhongh106@163.com, Tel: 0993-2057262

摘要:

磷脂酰乙醇胺结合蛋白(phosphatidyl ethanolamine-binding proteins, PEBP)基因家族广泛存在于真核生物中,在被子植物中主要起着促进或抑制开花和控制株型的作用。利用亚洲棉(Gossypium arboreum, A2)和雷蒙德氏棉(Gossypium raimondii, D5)的基因组数据库,分别搜索到8个棉花PEBP同源基因,都包含4个外显子和3个内含子,编码的蛋白都存在PEBP家族的保守基序和关键氨基酸位点,表明二倍体棉花中至少存在8个PEBP家族基因。进化分析表明,8个PEBP基因分属于3个亚家族,含FLOWERING LOCUS T (FT)-like亚家族1个、TERMINAL FLOWER 1 (TFL1)-like亚家族5个(包括3个TFL1和2个BFT)、MOTHER OF FT AND TFL1 (MFT)-like亚家族2个。实时荧光定量PCR分析陆地棉(Gossypium hirsutum) 8个PEBP基因在根、茎、叶、幼苗顶端分生组织、花、胚珠和25 d的纤维组织中的表达,表明FT1在叶片中表达量最高,其次是纤维、胚珠和花中;MFT1在各组织中均表达,但在纤维中表达量最高,其次是花和叶片中,而MFT2以在叶片中表达为主;TFL1aTFL1bTFL1c均在根中表达量最高,但TFL1c在叶片、花和胚珠中也有相对较高的表达;BFT1BFT2在叶片中表达量最高,但除幼苗顶端分生组织外,BFT1在其他各组织中的表达明显高于BFT2。这些结果表明,PEBP家族基因在棉花的生长发育中可能具有不同的功能。

关键词: 磷脂酰乙醇胺结合蛋白, 亚洲棉, 雷蒙德氏棉, 成花素, 基因表达

Abstract:

The phosphatidylethanolamine-binding proteins (PEBP) widely exist in eukaryotes. In angiosperms, PEBP family genes play important roles in promoting or inhibiting flowering, as well as plant architecture control. Eight PEBP genes were identified from diploid cotton Gossypium arboreum (A2) and Gossypium raimondii (D5) genome database, respectively. All the PEBP genes of cotton contained four exons and three introns, and their encoded proteins contained a conserved PEBP motif and critical amino acid sites of PEBP family, which indicated there were at least eight PEBP genes in diploid cotton. Phylogenetic analysis showed that eight cotton PEBP genes comprised three subfamilies: FLOWERING LOCUS T (FT)-like containing one gene, TERMINAL FLOWER 1 (TFL1)-like containing five genes including three TFL1 and two BFT genes, and MOTHER OF FT AND TFL1 (MFT)-like containing two genes. The expression patterns of eight Gossypium hirsutum PEBP family genes in root, stem, leaf, shoot apical meristem, flower, ovule and 25 days post-anthesis (DPA) fiber were identified with quantitative Real-time reverse transcription PCR (qRT-PCR). The results showed that FT1 transcript was preferentially expressed in leaf and secondly in fiber, ovule and flower. MFT1 expressed in all the tissues, with the highest expression level in fiber, then in flower and leaf, while MFT2 transcript was preferentially expressed in leaf. TFL1a, TFL1b and TFL1c expressed mainly in root, and TFL1c also expressed in leaf, flower and ovule. Expression of BFT1 and BFT2 were present mainly in leaf, and that of BFT1 in the other six tissues except in shoot apical meristem (SAM) was higher than that of BFT2. Expression analysis revealed that eight PEBP genes in cotton have different expression patterns, showing their different functional roles in regulation of cotton development.

Key words: PEBP, Gossypium arboreum, Gossypium raimondii, Florigen, Gene expression

[1]Banfield M J, Barker J J, Perry A C, Brady R L. Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction. Structure, 1998, 6: 1245–1254



[2]Hengst U, Albrecht H, Hess D, Monard D. The phosphatidylethanolamine-binding protein is the prototype of a novel family of serine protease inhibitors. J Biol Chem, 2001, 276: 535–540



[3]Chautard H, Jacquet M, Schoentgen F, Bureaud N, Bénédetti H. Tfs1p, a member of the PEBP family, inhibits the Ira2p but not the Ira1p Ras GTPase-activating protein in Saccharomyces cerevisiae. Eukaryot Cell, 2004, 3: 459–470



[4]Chardon F, Damerval C. Phylogenomic analysis of the PEBP gene family in cereals. J Mol Evol, 2005, 61: 579–590



[5]Li Q, Fan C, Zhang X, Wang X, Wu F, Hu R, Fu Y. Identification of a soybean MOTHER OF FT AND TFL1 homolog involved in regulation of seed germination. PLoS One, 2014, 9: e99642



[6]Xi W, Liu C, Hou X, Yu H. MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell, 2010, 22: 1733–1748



[7]Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura H. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell, 2011, 23: 3215–3229



[8]Karlgren A, Gyllenstrand N, Kallman T, Sundstrom J F, Moore D, Lascoux M, Lagercrantz U. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiol, 2011, 156: 1967–1977



[9]Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 2007, 316: 1030–1033



[10]Tamaki S, Matsuo S, Wong H, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science, 2007, 316: 1033–1036



[11]Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez J P, Eshed Y. The tomato FT ortholog triggers systemic signals that regulate growth and ?owering and substitute for diverse environmental stimuli. Proc Natl Acad Sci USA, 2006, 103: 6398–6403



[12]Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 2005, 309: 1052–1056



[13]Lin M K, Belanger H, Lee Y J, Varkonyi-Gasic E, Taoka K, Miura E, Xoconostle-Cázares B, Gendler K, Jorgensen R A, Phinney B, Lough T J, Lucas W J. FLOWRING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell, 2007, 19: 1488–1506



[14]Imamura T, Nakatsuka T, Higuchi A, Nishihara M, Takahashi H. The gentian orthologs of the FT/TFL1 gene family control floral initiation in Gentiana. Plant Cell Physiol, 2011, 52: 1031–1041



[15]Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou S, Igasaki T, Nishiguchi M, Yano K, Shimizu T, Takahashi S, Iwanami H, Moriya S, Abe K. Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus × domestica Borkh). Plant Cell Physiol, 2011, 51: 561–575



[16]Harig L, Beinecke F A, Oltmanns J, Muth J, Müller O, Rüping B, Twyman R M, Fischer R, Prüfer D, Noll G A. Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. Plant J, 2012, 72: 908–921



[17]Pin P A, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen J J, Nilsson O. An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science, 2010, 330: 1397–1400



[18]Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. Inflorescence commitment and architecture in Arabidopsis. Science, 1997, 275: 80–83



[19]Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E. Control of inflorescence architecture in Antirrhinum. Nature, 1996, 379: 791–797



[20]Hanzawa Y, Money T, Bradley D. A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci USA, 2005, 102: 7748–7753



[21]Ahn J H, Miller D, Winter V J, Banfield M J, Lee J H, Yoo S Y, Henz S R, Brady R L, Weigel D. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J, 2006, 25: 605–614



[22]Wendel J, Brubaker C, Alvarez I, Cronn R. Genetics and Genomics of Cotton. New York: Springer-Verlag, 2009. pp 3–22



[23]东锐, 院海英, 顾超, 郑银英, 黄先忠, 崔百明. 棉花GhFTL1基因的克隆及初步功能分析. 棉花学报, 2011, 23: 515–521



Dong R, Yuan H Y, Gu C, Zheng Y Y, Huang X Z, Cui B M. Clone and primary analysis of the function of GhFTL1 gene in cotton (Gossypium hirsutum). Cotton Sci, 2011, 23: 515–521 (in Chinese with English abstract)



[24]顾超, 李超, 李晓波, 肖向文, 崔百明, 黄先忠. 海岛棉GbMFT1基因的克隆及表达分析. 作物学报, 2013, 39: 1391–1399



Gu C, Li C, Li X B, Xiao X W, Cui B M, Huang X Z. Cloning and expression analysis of GbMFT1 gene in Gossypium barbadense L. Acta Agron Sin, 2013, 39: 1391–1399 (in Chinese with English abstract)



[25]顾超, 郭丹丽, 张峰, 李雪源, 艾先涛, 黄先忠. 海岛棉GbMFT2基因的克隆及表达分析. 棉花学报, 2014, 26: 197–203



Gu C, Guo D L, Zhang F, Li X Y, Ai X T, Huang X Z. Cloning and expression analysis of GbMFT2 gene in Gossypium barbadense L. Cotton Sci, 2014, 26: 197–203 (in Chinese with English abstract)



[26]Argiriou A, Michailidis G, Tsaftaris A S. Characterization and expression analysis of TERMINAL FLOWER1 homologs from cultivated alloteraploid cotton (Gossypium hirsutum) and its diploid progenitors. J Plant Physiol, 2008, 165: 1636–1646



[27]Wang K B, Wang Z W, Li F G, Ye W W, Wang J Y, Song G L, Yue Z, Cong L, Shang H H, Zhu S L, Zou C S, Li Q, Yuan Y L, Lu C R, Wei H L, Gou C Y, Zheng Z Q, Yin Y, Zhang X Y, Liu K, Wang B, Song C, Shi N, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet, 2012, 44: 1098–1103



[28]Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W, Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, Wei H, Li Z, Zhang G, Wang J, Liu K, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X. Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet, 2014, 46: 567–572



[29]Finn R D, Bateman A, Clements J, Coggill P, Eberhardt R Y, Eddy S R, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer E L, Tate J, Punta M. Pfam: the protein families database. Nucl Acids Res, 2014, 42: 222–230



[30]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731–2739



[31]Wendel J F, Schnabel A, Seelanan T. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA, 1995, 92: 280–284

[1] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[2] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[3] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[4] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[5] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[6] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[7] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[8] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[9] 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289.
[10] 王晓阳,王丽媛,潘兆娥,何守朴,王骁,龚文芳,杜雄明. 亚洲棉短绒突变体纤维发育及其差异基因表达分析[J]. 作物学报, 2020, 46(5): 645-660.
[11] 米文博, 方园, 刘自刚, 徐春梅, 刘高阳, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 白菜型冬油菜温敏不育系PK3-12S育性转换的差异蛋白质组学分析[J]. 作物学报, 2020, 46(10): 1507-1516.
[12] 靳舒荣,王艳玫,常悦,王月华,李加纳,倪郁. 不同收获指数甘蓝型油菜β-淀粉酶活性及其基因家族成员的表达分析[J]. 作物学报, 2019, 45(8): 1279-1285.
[13] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
[14] 赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳. 陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *[J]. 作物学报, 2019, 45(12): 1784-1795.
[15] 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!