欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (04): 515-523.doi: 10.3724/SP.J.1006.2015.00515

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

豌豆品系X9002抗白粉病基因鉴定

王仲怡1,付海宁1,2,孙素丽1,段灿星1,武小菲1,杨晓明2,朱振东1,*   

  1. 1 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程,北京100081;2甘肃农业科学院,甘肃兰州 730070
  • 收稿日期:2014-10-25 修回日期:2015-02-06 出版日期:2015-04-12 网络出版日期:2015-03-03
  • 通讯作者: 朱振东, E-mail: zhuzhendong@caas.cn, Tel: 010-82109609
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-09),农业部作物种质资源保护子项目(NB2013-2130135-25-15),中国农业科学院科技创新工程,国家自然科学基金项目(31160304)项目资助。

Identification of Powdery Mildew Resistance Gene in Pea Line X9002

WANG Zhong-Yi1,FU Hai-Ning1,2,SUN Su-Li1,DUAN Can-Xin1,WU Xiao-Fei1,YANG Xiao-Ming2,ZHU Zhen-Dong1,*   

  1. 1 National Key Facility for Crop Gene Resource and Genetic Improvement / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
  • Received:2014-10-25 Revised:2015-02-06 Published:2015-04-12 Published online:2015-03-03
  • Contact: 朱振东, E-mail: zhuzhendong@caas.cn, Tel: 010-82109609

摘要:

白粉病是豌豆的主要病害之一,在全球范围内引起严重经济损失。防治豌豆白粉病最有效、经济和环境友好的方法是利用抗病品种。迄今,2个隐性抗白粉病基因er1er2和一个显性抗白粉病基因Er3已在豌豆中被鉴定,其中er1基因在世界上被广泛应用于抗病品种培育。er1基因隶属MLO基因家族,其抗性由豌豆PsMLO1基因座位功能丧失产生。X9002是甘肃省农业科学院培育的一个半无叶(afila)抗白粉病豌豆品系。本研究对X9002抗白粉病基因进行鉴定,开发用于抗白粉病基因选择的分子标记。遗传分析表明X9002对白粉病抗性由一个隐性单基因控制,SSR标记将该基因定位到豌豆第VI连锁群er1座位区域,标记AD60和c5DNAmet与其连锁。PsMLO1基因序列分析发现,X9002存在一个未知大小和身份的片段插入,该类型突变也发生在含有er1-2等位基因的豌豆品种Stratagem和Franklin,表明X9002抗白粉病基因为er1-2。一个鉴定er1-2等位基因的功能标记PsMLO1-650被开发,该标记为互引相标记,仅在感病植株中扩增,可以有效用于分子辅助选择。

关键词: 豌豆, 白粉病, 抗病基因, PsMLO1基因, 功能标记

Abstract:

Powdery mildew is one of the major diseases in pea, causing severe economic loss worldwide. Planting resistant cultivars is the most effective, economical and eco-friendly method for controlling the disease. So far, two recessive resistance genes (er1, er2) and one dominant resistance gene (Er3) have been identified in pea, and er1 has been utilized in breeding programs worldwide. Gene er1 is a member of MLO gene family, and er1 resistance is caused by the loss of function at a PsMLO1 locus in pea. X9002 with resistance to powdery mildew is an afila pea line bred by Gansu Academy of Agricultural Sciences. Here, we identified the powdery mildew resistance gene in X9002, and developed molecular marker for the gene selection. Genetic analysis for powdery mildew resistance showed that X9002 carries a recessive resistance gene. The resistance gene was mapped in a region carrying er1 locus on the pea linkage group VI using SSR markers, and was linked to SSR marker AD60 and gene marker c5DNAmet. PsMLO1 sequence analysis revealed that X9002 carries an insertion of unknown size and identity. The same mutation also existed in pea cultivars Stratagem and Franklin carrying er1-2 allele, indicating that the resistance gene is er1-2 in X9002. A functional marker PsMLO1-650 for er1-2 was developed, and the marker was a coupling-phase marker that was detected only in susceptible plants. PsMLO1-650 can be used effectively in marker-assisted selection.

Key words: Pisum sativum L., Powdery mildew, Resistance gene, PsMLO1 gene, Functional marker

[1]Smýkal P, Aubert G, Burstin J, Coyne C J, Ellis N T H, Flavell A J, Ford R, Hýbl M, Macas J, Neumann P, McPhee K E, Redden R J, Rubiales D, Weller J L, Warkentin T D. Pea (Pisum sativum L.) in the genomic era. Agronomy, 2012, 2: 74–115



[2]Li L, Redden R J, Zong X X, Berger J D, Bennett S J. Ecogeographic analysis of pea collection sites from China to determine potential sites with abiotic stresses. Genet Resour Crop Evol, 2013, 60: 1801–1815



[3]FAOSTAT 2013. Available online: http://faostat3.fao.org /(accessed on 13 October 2014)



[4]Ghafoor A, McPhee K. 2012. Marker assisted selection (MAS) for developing powdery mildew resistant pea cultivars. Euphytica, 2012, 186: 593–607



[5]Fondevilla S, Rubiales D. Powdery mildew control in pea. A review. Agron Sust Dev, 2012, 32: 401–409



[6]Harland S C. Inheritance of immunity to mildew in Peruvian forms of Pisum sativum. Heredity, 1948, 2: 263–269



[7]Heringa R J, Norel A, Tazelaar M F. Resistance to powdery mildew (Erysiphe polygoni DC.) in peas (Pisum sativum L.). Euphytica, 1969, 18: 163–169



[8]Tiwari K R, Penner G A, Warkentin T D. Inheritance of powdery mildew resistance in pea. Can J Plant Sci, 1997, 77: 307–310



[9]Vaid A, Tyagi P D. Genetics of powdery mildew resistance in pea. Euphytica, 1997, 96: 203–206



[10]Sharma B. The Pisum genus has only one recessive gene for powdery mildew resistance. Pisum Genet, 2003, 35: 22–27



[11]Sharma B. Identification of recessive er gene for powdery mildew resistance in a landrace of Pisum sativum. Pisum Genet, 2003, 35: 30–31



[12]Liu S M, O’Brien L, Moore S G. A single recessive gene confers effective resistance to powdery mildew of field pea grown in northern New South Wales. Aust J Exp Agric, 2003, 43: 373–378



[13]Fondevilla S, Carver T L W, Moreno M T, Rubiales D. Macroscopic and histological characterization of genes er1 and er2 for powdery mildew resistance in pea. Eur J Plant Pathol, 2006, 115: 309–321



[14]Fondevilla S, Torres A M, MorenoM T, Rubiales D. Identi?cation of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea. Breed Sci, 2007, 57: 181–184



[15]Dirlewanger E, Isaac P G, Ranade S, Belajouza M, Cousin R, Vienne D. Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet, 1994, 88: 17–27



[16]Katoch V, Sharma S, Pathania S, Banayal D K, Sharma S K, Rathour R. Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group III. Mol Breed, 2010, 25: 229–237



[17]Timmerman G M, Frew T J, Weeden N F. Linkage analysis of er1, a recessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi DC.). Theor Appl Genet, 1994, 88: 1050–1055



[18]Tiwari K R., Penner G A, Warkentin T D. Identification of coupling and repulsion phase RAPD markers for powdery mildew resistance gene er-1 in pea. Genome, 1998, 41: 440–444



[19]Janila P, Sharma B. RAPD and SCAR markers for powdery mildew resistance gene er1 in pea. Plant Breed, 2004, 12: 271–274



[20]Ek M, Eklund M, Von Post R, Dayteg C, Henriksson T, Weibull P, Ceplitis A, Isaac P, Tuvesson S. Microsatellite markers for powdery mildew resistance in pea (Pisum sativum L.). Hereditas, 2005, 142: 86–91



[21]Pereira G, Marques C, Ribeiro R, Formiga S, Dâmaso M, Sousa T M, Farinhó M, Leitão J M. Identification of DNA markers linked to an induced mutated gene conferring resistance to powdery mildew in pea (Pisum sativum L.). Euphytica, 2010, 171: 327–335



[22]Srivastava R K, Mishra S K, Singh K, Mohapatra T. Development of a coupling-phase SCAR marker linked to the powdery mildew resistance gene er1 in pea (Pisum sativum L.). Euphytica, 2012, 186: 855–866



[23]Jørgensen J H. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica, 1992, 63: 141–152



[24]Pereira G, Leitão J. Two powdery mildew resistance mutations induced by ENU in Pisum sativum L. affect the locus er1. Euphytica, 2010, 171: 345–354



[25]Humphry M, Reinstädler A, Ivanov S, Bisseling T, Panstruga R. Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol, 2011, 12: 866–878



[26]Pavan S, Schiavulli A, Appiano M, Marcotrigiano A R, Cillo F, Visser R G F, Bai Y, Lotti C, Luigi Ricciardi L. Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theor Appl Genet, 2011, 123: 1425–1431



[27]Santo T, Rashkova M, Alabaca C, Leitao J. The ENU-induced powdery mildew resistant mutant pea (Pisum sativum L.) lines S(er1mut1) and F(er1mut2) harbour early stop codons in the PsMLO1 gene. Mol Breed, 2013, 32: 723–727



[28]Pavan S, Schiavulli A, Appiano M, Miacola C, Visser R G F, Bai Y L, Lotti C, Ricciardi L. Identification of a complete set of functional markers for the selection of er1 powdery mildew resistance in Pisum sativum L. Mol Breed, 2013, 31: 247–253



[29]Ond?ej M, Dostálová R, Hýbl M, Odstr?ilová L, Tyller R, Trojan R. Utilization of afila types of pea (Pisum sativum L.) resistant to powdery mildew (Erysiphe pisi DC.) in the breeding programs. Plant Soil Environ, 2003, 49: 481–485



[30]曾亮, 李敏权, 杨晓明. 豌豆种质资源白粉病抗性鉴定. 草原与草坪, 2012, 32: 35–38



Zeng L, Li M Q, Yang X M. Identification of resistance of peas resources to powdery mildew. Grassland & Turf, 2012, 32(4): 35–38 (in Chinese with English abstract)



[31]王仲怡, 包世英, 段灿星, 宗绪晓, 朱振东. 豌豆抗白粉病资源筛选及分子鉴定. 作物学报, 2013, 39: 1030–1038



     Wang Z Y, Bao S Y, Duan C X, Zong X X, Zhu Z D. Screening and molecular identification of resistance to powdery mildew in pea germplasm. Acta Agron Sin, 2013, 39: 1030−1038 (in Chinese with English abstract)



[32]付海宁, 孙素丽, 朱振东, 段灿星, 杨晓明. 加拿大豌豆品种(系)抗白粉病表型和基因型鉴定. 植物遗传资源学报, 2014, 15: 1028−1033



Fu H N, Sun S L, Zhu Z D, Duan C X, Yang X M. Phenotypic and genotypic identification of powdery mildew resistance in pea cultivars or lines from



Canada. J Plant Genet Resour, 2014, 15: 1028−1033 (in Chinese with English abstract)



[33]Rana J C, Banyal D K, Sharma K D, Sharma M K, Gupta S K, Yadav S K. Screening of pea germplasm for resistance to powdery mildew. Euphytica, 2013, 189: 271–282



[34]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating population. Proc Natl Acad Sci USA, 1991, 88: 9828–9832



[35]Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel M L, Aubert G, Rameau C, Baranger A, Coyne C, Lejeune-Henaut I, Burstin J. Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet, 2005, 111: 1022–1031



[36]Bordat A,Savois V, Nicolas M, Salse J, Chauveau A, Bourgeois M, Potier J, Houtin H, Rond C, Murat F, Marget P, Aubert G, Burstin J. Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L. Genes Genome Genet, 2011, 1: 93–103



[37]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic maps of experimental and natural populations. Genomics, 1987, 1: 174–181



[38]Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172–175



[39]Sharma B, Yadav Y. Pisum fulvum carries a recessive gene for powdery mildew resistance. Pisum Genet, 2003, 35: 31



[40]Pierce W H. Resistance to powdery mildew in peas. Phytopathology, 1948, 38: 21



[41]Cousin R. Resistance to powdery mildew in pea. Ann Amélior Plantes, 1965, 15: 93–97



[42]王凤宝, 董立峰, 付金锋, 郑桂茹, 张柏昌, 梁润波, 聂亚琴, 宗云生, 李守训. 超高产豌豆新品种引种及配套栽培技术研究. 河北农业技术师范学院学报, 1998, 12(4): 17–22



Wang F B, Dong L F, Fu J F, Zheng G R, Zhang B C, Liang R P, Nie Y Q, Zong Y S, Li S X. Studies on introduction and culture techniques of a new super high yielding pea variety. J Hebei Agrotech Teachers College, 1998, 12(4): 17–22 (in Chinese with English abstract)



[43]董立峰, 王凤宝, 付金锋. 半无叶型甜豌豆新品种须菜1号的选育. 长江蔬菜, 2008, (8): 45–46



Dong L F, Wang F B, Fu J F. Development of a new semi-leafless sweet pea “Xucai No.1”. J Changjiang Vegetables, 2008, (8): 45–46 (in Chinese)



[44]Marx G A. Location of er proving elusive. Pisum Newsl, 1986, 18:39–41



[45]Wolko B, Weeden N F. Additional markers for chromosome 6. Pisum Newsl, 1990, 22: 71–74

[1] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[2] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[3] 张欢, 罗怀勇, 李威涛, 郭建斌, 陈伟刚, 周小静, 黄莉, 刘念, 晏立英, 雷永, 廖伯寿, 姜慧芳. 花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析[J]. 作物学报, 2021, 47(12): 2314-2323.
[4] 张福彦, 程仲杰, 陈晓杰, 王嘉欢, 陈锋, 范家霖, 张建伟, 杨保安. 黄淮麦区小麦粒重基因等位变异的分子鉴定及育种应用[J]. 作物学报, 2021, 47(11): 2091-2098.
[5] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[6] 李庆成,黄磊,李亚洲,范超兰,谢蝶,赵来宾,张舒洁,陈雪姣,甯顺腙,袁中伟,张连全,刘登才,郝明. 小麦-黑麦6RS/6AL易位染色体的遗传稳定性及其在配子中的传递[J]. 作物学报, 2020, 46(4): 513-519.
[7] 王芳权,范方军,夏士健,宗寿余,郑天清,王军,李文奇,许扬,陈智慧,蒋彦婕,陶亚军,仲维功,杨杰. 水稻光温敏核不育基因tms5pms3的互作效应[J]. 作物学报, 2020, 46(3): 317-329.
[8] 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506.
[9] 郝志明,耿妙苗,温树敏,闫桂军,王睿辉,刘桂茹. 小麦抗麦红吸浆虫基因标记的开发与验证[J]. 作物学报, 2020, 46(02): 179-193.
[10] 崔翠,程闯,赵愉风,郜欢欢,王瑞莉,王刘艳,周清元. 52份豌豆种质萌发期耐铝毒性的综合评价与筛选[J]. 作物学报, 2019, 45(5): 798-805.
[11] 向文扬,杨永庆,任秋燕,晋彤彤,王丽群,王大刚,智海剑. 大豆抗SC3候选基因的克隆及分析[J]. 作物学报, 2019, 45(12): 1822-1831.
[12] 司文洁,吴林楠,郭利建,周梦蝶,刘香利,马猛,赵惠贤. 小麦粒重相关基因TaCYP78A5功能标记开发及验证[J]. 作物学报, 2019, 45(12): 1905-1911.
[13] 张宏娟,李玉莹,苗丽丽,王景一,李超男,杨德龙,毛新国,景蕊莲. 小麦转录因子基因TaNAC67参与调控穗长和每穗小穗数[J]. 作物学报, 2019, 45(11): 1615-1627.
[14] 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510.
[15] 肖湘谊,史学涛,盛浩闻,刘金灵,肖应辉. 水稻抗稻瘟病基因Pi47的精细定位和候选基因分析[J]. 作物学报, 2018, 44(7): 977-987.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!