欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (02): 179-193.doi: 10.3724/SP.J.1006.2020.91029

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦抗麦红吸浆虫基因标记的开发与验证

郝志明1,耿妙苗1,温树敏1,闫桂军2,王睿辉1,*(),刘桂茹1,*()   

  1. 1 河北农业大学 / 华北作物种质资源研究与利用教育部重点实验室, 河北保定 071000
    2 西澳大学农业与环境学院, 澳大利亚尼德兰兹 6009
  • 收稿日期:2019-04-08 接受日期:2019-09-26 出版日期:2020-02-12 网络出版日期:2019-10-16
  • 通讯作者: 王睿辉,刘桂茹
  • 作者简介:E-mail: haozhiming0730@hotmail.com
  • 基金资助:
    本研究由国家自然科学基金项目资助(31371617)

Development and validation of markers linked to genes resistant to Sitodiplosis mosellana in wheat

HAO Zhi-Ming1,GENG Miao-Miao1,WEN Shu-Min1,YAN Gui-Jun2,WANG Rui-Hui1,*(),LIU Gui-Ru1,*()   

  1. 1 Hebei Agricultural University / North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Baoding 071000, Hebei, China
    2 School of Agriculture and Environment, the University of Western Australia, Nedlands 6009, Australia
  • Received:2019-04-08 Accepted:2019-09-26 Published:2020-02-12 Published online:2019-10-16
  • Contact: Rui-Hui WANG,Gui-Ru LIU
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31371617)

摘要:

麦红吸浆虫(Sitodiplosis mosellana Géhin)严重影响小麦产量和品质, 选育和使用抗虫品种是降低虫害损失最安全有效的途径, 利用抗虫性连锁或功能标记对提高小麦抗虫分子育种效率具有重要意义。在前期从转录组数据中挖掘到抗虫性主效QTL (QSm.hbau-4A) 6个相关差异基因的基础上, 依据这些基因序列中存在的InDel和SNP, 分别开发了2个EST标记和6个KASP标记, 并在抗虫性不同的一套重组近交系(RIL)和一套小麦品种中进行了标记的有效性验证。所开发的8个标记在抗、感虫小麦亲本间均表现出较好的多态性, 在RIL株系中的检测有效率均达到90%左右; 除E10-10外, 这些标记在供试高抗(56.3%~86.7%)和高感(85.7%~100.0%)小麦品种中的检测有效率均较高, 可用于小麦种质资源的抗虫性筛选。同时发现, 11个具备所有抗虫标记位点的抗虫小麦品种, 多为审定时间较早或已停止使用的品种, 这使得结合标记辅助选择等手段鉴定和创新小麦抗虫种质资源的工作日益紧迫。

关键词: 小麦, 麦红吸浆虫, 抗虫相关基因, 功能标记, SNP, EST, KASP

Abstract:

Orange wheat blossom midge (OWBM) (Sitodiplosis mosellana Géhin) has seriously reduced wheat production and processing quality. Breeding midge-resistant wheat has been considered the most effective way to reduce kernel losses caused by OWBM, and marker-assisted selection (MAS) strategy in crop breeding using linked or functional markers of target trait of interest is of great importance in improving breeding efficiency. Based on the InDels and SNPs within the sequences of six midge resistance-related genes discovered from transcriptome data in the previously mapped major QTL (QSm.hbau-4A) region, we developed and validated two EST and six KASP markers in a panel of recombinant inbred lines (RILs) and a panel of wheat cultivars with different OWBM resistance levels. These markers were polymorphic between the resistant and susceptible wheat parents, and approximately 90% of RIL lines showed the corresponding marker-based genotypes with their phenotypes. Except for E10-10, the other seven markers had higher detection efficiency in highly resistant (56.3%-86.7%) and in highly susceptible (85.7%-100.0%) wheat cultivars, thus making them applicable for screening midge-resistant wheat germplasm with locus QSm.hbau-4A. Among the eleven midge-resistant wheat cultivars with all resistance alleles for the seven markers developed, most were historical wheat cultivars, and rarely used in the present production, which suggests how to use old cultivars in wheat germplasm identification and enhancement on midge-resistance through MAS is urgent.

Key words: bread wheat (Triticum aestivum L.), Sitodiplosis mosellana, resistance-related genes, functional markers, SNP, EST, KASP

表1

供试小麦亲本与RIL株系的表型"

小麦亲本及株系
Wheat parent and line
抗性指数(RI)
Resistance index
抗虫等级
Classification
小麦株系
Wheat line
抗性指数(RI)
Resistance index
抗虫等级
Classification
冀麦24 Jimai 24 0.0128-0.1233 1 RIL-264 0.1007-0.2659 2
6218 2.9543-7.2714 5 RIL-285 0.0064-0.2105 2
RIL-7 0.0575-0.0622 1 RIL-16 0.7300-1.3397 4
RIL-12 0.0133-0.0336 1 RIL-21 0.9122-1.4373 4
RIL-18 0.0745-0.0817 1 RIL-60 1.2009-1.2429 4
RIL-23 0.0029-0.0330 1 RIL-106 1.2142-1.2325 4
RIL-38 0.1441-0.1886 1 RIL-251 0.9603-1.4106 4
RIL-64 0.0188-0.0380 1 RIL-19 2.7085-2.8602 5
RIL-73 0.0784-0.1409 1 RIL-20 2.6327-3.1797 5
RIL-91 0.0205-0.0818 1 RIL-25 3.0783-4.3757 5
RIL-115 0.0503-0.1358 1 RIL-29 2.1227-2.5619 5
RIL-134 0.0104-0.0394 1 RIL-45 2.2811-2.7601 5
RIL-156 0.0244-0.0253 1 RIL-46 2.3158-6.3697 5
RIL-169 0.0434-0.0569 1 RIL-49 2.0398-2.6978 5
RIL-170 0.0539-0.1697 1 RIL-62 1.2193-2.6308 5
RIL-175 0.0123-0.0731 1 RIL-63 2.0683-2.5504 5
RIL-186 0.0231-0.0467 1 RIL-68 2.2674-4.9395 5
RIL-194 0.1535-0.1781 1 RIL-72 2.8236-3.1560 5
RIL-214 0.0778-0.1384 1 RIL-84 2.0781-2.8191 5
RIL-223 0.0460-0.1956 1 RIL-92 2.1872-4.3090 5
RIL-249 0.0403-0.0848 1 RIL-95 2.6088-2.6854 5
RIL-253 0.0037-0.0109 1 RIL-97 1.6879-2.1144 5
RIL-259 0.0406-0.0534 1 RIL-102 2.7594-2.9148 5
RIL-274 0.0293-0.0953 1 RIL-113 1.4552-2.8464 5
RIL-283 0.0091-0.0658 1 RIL-119 1.2420-3.1363 5
RIL-13 0.1109-0.2648 2 RIL-122 2.4698-2.6681 5
RIL-28 0.1087-0.4394 2 RIL-125 1.6834-2.1306 5
RIL-39 0.2354-0.2983 2 RIL-139 2.5142-3.2524 5
RIL-44 0.2961-0.3166 2 RIL-148 1.8636-5.5925 5
RIL-54 0.0331-0.2245 2 RIL-150 2.4328-3.1815 5
RIL-56 0.0064-0.3427 2 RIL-167 2.5747-2.9479 5
RIL-69 0.1050-0.2124 2 RIL-168 1.9348-3.3892 5
RIL-78 0.0586-0.2337 2 RIL-174 1.1562-2.6991 5
RIL-107 0.0039-0.3020 2 RIL-182 2.7128-3.3572 5
RIL-155 0.0188-0.2217 2 RIL-185 3.1085-4.9160 5
RIL-158 0.2659-0.4615 2 RIL-212 2.0868-2.6547 5
RIL-164 0.1272-0.3710 2 RIL-213 2.0094-3.0880 5
RIL-180 0.3315-0.3891 2 RIL-216 1.1651-1.7900 5
RIL-183 0.0392-0.3963 2 RIL-233 2.4937-2.6506 5
RIL-196 0.0518-0.2096 2 RIL-238 1.1102-3.0323 5
RIL-197 0.1203-0.2525 2 RIL-240 3.0399-6.1309 5
RIL-218 0.1467-0.2391 2 RIL-247 1.5939-2.1915 5
RIL-219 0.1613-0.2189 2 RIL-248 2.1621-4.1447 5
RIL-226 0.3513-0.4673 2 RIL-265 2.6932-2.9406 5
RIL-241 0.2658-0.3099 2 RIL-267 2.7879-4.7565 5
RIL-244 0.0933-0.2738 2 RIL-275 1.5796-2.3936 5
RIL-260 0.0977-0.2581 2 RIL-276 1.3032-2.7370 5

图1

6个差异基因在抗(冀麦24)、感(6218)小麦亲本及中国春参考序列之间的比对结果 蓝色或红色碱基代表非同义突变的SNP位点或插入缺失, 其中蓝色碱基为可信度较高的SNPs, 并以箭头标注。"

图2

EST标记E1-2 (A)和E10-10 (B)在抗、感虫小麦亲本及部分RIL系中的扩增结果 M: 分子量marker (pBR322/Mst I酶切片段); 1: 感虫小麦亲本6218; 2: 抗虫小麦亲本冀麦24; 3~14: 感虫株系(RIL-16、RIL-19、RIL-20、RIL-21、RIL-25、RIL-29、RIL-45、RIL-102、RIL-113、RIL-119、RIL-125和RIL-139); 15~26: 抗虫株系(RIL-7、RIL-12、RIL-18、RIL-23、RIL-64、RIL-73、RIL-91、RIL-115、RIL-134、RIL-156、RIL-169和RIL-170)。"

图3

KASP标记在抗、感虫小麦亲本、92个RIL系和95个小麦品种中的分型结果 红色点, HEX基因型; 蓝色点, FAM基因型; 绿色点, 杂合基因型; 粉色点, 缺失; 黑色点, 对照. 图中A~F分别为KASP标记K3-1-1、K3-7-1、K3-7-3、K3-16-1、K10-10-6和K10-13-x的分型结果。"

表2

EST标记和KASP标记在供试RIL株系中的标记基因型及比例"

标记
Marker
物理位置a
Physical location a (bp)
抗虫RILs各标记基因型及比例
Marker-based genotypes and their ratio
for resistant RIL lines (%)
感虫RILs各标记基因型及比例
Marker-based genotypes and their ratio
for susceptible RIL lines (%)
A H B A H B
E1-2 707248439 40 (85.1) 0 (0.0) 7 (14.9) 2 (4.4) 0 (0.0) 43 (95.6)
E10-10 705763221 40 (85.1) 0 (0.0) 7 (14.9) 4 (8.9) 0 (0.0) 41 (91.1)
K3-7-1 705889579 39 (86.7) 0 (0.0) 6 (13.3) 2 (4.4) 0 (0.0) 43 (95.6)
K3-7-3 705890140 39 (86.7) 0 (0.0) 6 (13.3) 2 (4.4) 0 (0.0) 43 (95.6)
K10-10-6 705763509 39 (86.7) 0 (0.0) 6 (13.3) 2 (4.4) 0 (0.0) 43 (95.6)
K3-16-1 707251252 41 (87.2) 0 (0.0) 6 (12.8) 2 (4.4) 0 (0.0) 43 (95.6)
K3-1-1 707477512 0 (0.0) 39 (86.7) 6 (13.3) 0 (0.0) 2 (4.4) 43 (95.6)
K10-13-x 706095841 0 (0.0) 39 (88.6) 5 (11.4) 0 (0.0) 2 (4.6) 42 (95.5)

表3

供试小麦品种的表型"

小麦品种
Wheat cultivar
抗性指数(RI)
Resistance index
抗虫等级
Classification
小麦品种
Wheat cultivar
抗性指数(RI)
Resistance index
抗虫等级
Classification
小偃81 Xiaoyan 81 0.0039-0.0073 1 邯麦12号 Hanmai 12 0.3599-0.8138 3
晋麦47 Jinmai 47 0.0026-0.0155 1 河农6425 Henong 6425 0.1632-0.8449 3
河农6049 Henong 6049 0.0000-0.0235 1 周黑麦1号 Zhouheimai 1 0.6180-0.8651 3
石麦12号 Shimai 12 0.0197-0.0468 1 中麦12 Zhongmai 12 0.3425-0.8812 3
衡优18 Hengyou 18 0.0442-0.0513 1 藁优9618 Gaoyou 9618 0.0978-0.9218 3
河农58-3 Henong 58-3 0.0300-0.0770 1 石麦14号 Shimai 14 0.9019-0.9743 3
石新828 Shixin 828 0.0013-0.0862 1 科农199 Kenong 199 0.8349-1.0414 4
河农4198 Henong 4198 0.0602-0.1087 1 良星99 Liangxing 99 0.3466-1.1006 4
西农6028 Xinong 6028 0.0015-0.1089 1 石家庄10号 Shijiazhuang 10 0.0074-1.1150 4
河农215 Henong 215 0.0900-0.1214 1 石4185 Shi 4185 0.3530-1.1329 4
PH82-2-2 0.0423-0.1223 1 邢麦7号 Xingmai 7 0.6757-1.1334 4
科农1093 Kenong 1093 0.0678-0.1338 1 观35 Guan 35 0.7848-1.1727 4
矮丰1号 Aifeng 1 0.0009-0.1345 1 长6878 Chang 6878 0.1776-1.1764 4
晋麦33 Jinmai 33 0.0632-0.1395 1 石家庄8号 Shijiazhuang 8 1.1628-1.2792 4
中农28 Zhongnong 28 0.1412-0.1509 1 藁优9908 Gaoyou 9908 0.1786-1.2974 4
丰产2号 Fengchan 2 0.0302-0.1567 1 济麦20 Jimai 20 0.6224-1.3508 4
南大2419 Nanda 2419 0.0012-0.1645 1 衡0628 Heng 0628 1.1138-1.3548 4
济麦22 Jimai 22 0.0636-0.1806 1 河农826 Henong 826 1.0058-1.3817 4
中麦155 Zhongmai 155 0.1302-0.2029 2 轮选061 Lunxuan 061 0.8530-1.5171 5
晋麦79 Jinmai 79 0.0115-0.2049 2 北京0045 Beijing 0045 0.7773-1.7354 5
河农822 Henong 822 0.0567-0.2088 2 农大399 Nongda 399 0.6830-1.7594 5
陕229 Shaan 299 0.1115-0.2167 2 衡95观26 Heng 95 guan 26 1.2248-1.7931 5
汶农14 Wennong 14 0.1723-0.2213 2 衡4444 Heng 4444 1.6026-1.8759 5
邯麦9号 Hanmai No.9 0.0259-0.2524 2 衡7228 Heng 7228 0.8897-1.8930 5
临汾3050 Linfen 3050 0.0146-0.2557 2 邢麦6号 Xingmai 6 1.6227-1.9706 5
白硬冬2号 Baiyingdong 2 0.2241-0.2673 2 周麦23 Zhoumai 23 1.1381-1.9960 5
良星66 Liangxing 66 0.1759-0.2731 2 石新618 Shixin 618 0.8939-1.9989 5
婴泊700 Yingbo 700 0.1775-0.2770 2 NC2 1.4307-2.0183 5
河农9206 Henong 9206 0.2792-0.2844 2 衡4399 Heng 4399 1.7993-2.1132 5
冀麦23 Jimai 23 0.0296-0.2923 2 衡4338 Heng 4338 2.0068-2.1404 5
师栾02-1 Shiluan 02-1 0.0307-0.3112 2 周麦22 Zhoumai 22 1.6367-2.2851 5
冀5579 Ji 5579 0.0469-0.3598 2 冀糯200 Jiru 200 0.0244-2.2972 5
陕225 Shaan 225 0.1824-0.3881 2 河农7106 Henong 7106 0.3960-2.4059 5
石麦21号 Shimai 21 0.3801-0.4025 2 邯麦14 Hanmai 14 2.4645-2.6210 5
中麦175 Zhongmai 175 0.0873-0.4178 2 沧麦6005 Cangmai 6005 0.5190-2.6750 5
冀5265 Ji 5265 0.2441-0.4259 2 郑麦9694 Zhengmai 9694 0.4956-2.7112 5
科农213 Kenong 213 0.2667-0.4381 2 沧麦119 Cangmai 119 1.0727-3.1996 5
石新539 Shixin 539 0.1862-0.4457 2 百农AK58 Bainong AK58 3.0456-3.2033 5
保麦10号 Baomai 10 0.1057-0.4679 2 沧麦028 Cangmai 028 2.5945-3.3725 5
烟农23 Yannong 23 0.0583-0.4747 2 周麦16 Zhoumai 16 1.5595-3.9194 5
石家庄11号 Shijiazhuang 11 0.3940-0.4798 2 烟优361 Yanyou 361 4.1998-4.7174 5
轮选987 Lunxuan 987 0.4651-0.4932 2 临汾6035 Linfen 6035 1.5158-4.9971 5
洛麦21 Luomai 21 0.5366-0.5377 3 冀6358 Ji 6358 2.8190-5.1615 5
农大3432 Nongda 3432 0.1076-0.5399 3 沧6003 Cang 6003 2.9203-5.2570 5
石麦16号 Shimai 16 0.5887-0.6046 3 周麦18 Zhoumai 18 5.9047-19.5165 5
晶白麦1号 Jingbaimai 1 0.3560-0.6230 3 中国春 Chinese Spring
河农827 Henong 827 0.1498-0.6978 3 咸农39 Xiannong 39
河农5290 Henong 5290 0.6108-0.7991 3

表4

EST标记和KASP标记在供试小麦品种中的标记基因型及比例"

标记
Marker
抗虫品种的标记基因型及比例
Marker-based genotypes and their ratios
for resistant wheat cultivars
中间型品种的标记基因型及比例
Marker-based genotypes and their ratios
for lowly resistant wheat cultivars
感虫品种的标记基因型及比例
Marker-based genotypes and their
ratios for susceptible wheat cultivars
A H B A H B A H B
E1-2 16 (37.2) 7 (16.3) 20 (46.5) 3 (25.0) 0 (0.0) 9 (75.0) 5 (12.5) 3 (7.5) 32 (80.0)
E10-10 37 (84.1) 0 (0.0) 7 (15.9) 9 (75.0) 1 (8.3) 2 (16.7) 30 (75.0) 1 (2.5) 9 (22.5)
K3-7-1 12 (30.8) 0 (0.0) 27 (69.2) 1 (8.3) 0 (0.0) 11 (91.7) 3 (7.7) 0 (0.0) 36 (92.3)
K3-7-3 12 (31.6) 0 (0.0) 26 (68.4) 1 (9.1) 0 (0.0) 10 (90.9) 3 (7.7) 0 (0.0) 36 (92.3)
K10-10-6 15 (37.5) 0 (0.0) 25 (62.5) 2 (16.7) 0 (0.0) 10 (83.3) 5 (12.8) 0 (0.0) 34 (87.2)
K3-16-1 20 (62.5) 1 (3.1) 11 (34.4) 3 (25.0) 0 (0.0) 9 (75.0) 8 (20.5) 1 (2.6) 30 (76.9)
K3-1-1 1 (2.5) 13 (32.5) 26 (65.0) 0 (0.0) 1 (8.3) 11 (91.7) 0 (0.0) 3 (7.7) 36 (92.3)
K10-13-x 0 (0.0) 15 (38.5) 24 (61.5) 0 (0.0) 1 (11.1) 8 (88.9) 0 (0.0) 5 (20.8) 19 (79.2)

图4

抗(47个)、感(45个)虫小麦RIL株系、高抗品种(19个)、中抗品种(24个)、低抗品种(12个)、感虫品种(12个)和高感品种(28个)中的标记基因型所占比例"

表5

在7个抗性标记位点上完全一致的11个小麦品种的抗虫性及其标记基因型"

小麦品种名称
Wheat cultivar name
抗性指数(RI)
Resistance index
抗虫等级
Classification
E1-2a K10-10-6 K3-7-1 K3-7-3 K10-13-x K3-16-1 K3-1-1
河农6049 Henong 6049 0.0000-0.0235 1 a G:G A:A T:T C:G T:T T:G
石麦12号 Shimai 12 0.0197-0.0468 1 a G:G A:A T:T C:G T:T T:G
河农4198 Henong 4198 0.0602-0.1087 1 a G:G A:A T:T C:G T:T T:G
西农6028 Xinong 6028 0.0015-0.1089 1 a G:G A:A T:T C:G T:T T:G
晋麦33 Jinmai 33 0.0632-0.1395 1 a G:G A:A T:T C:G T:T T:G
中农28 Zhongnong 28 0.1412-0.1509 1 a G:G A:A T:T C:G T:T T:G
丰产2号 Fengchan 2 0.0302-0.1567 1 a G:G A:A T:T C:G T:T T:T
河农215 Henong 215 0.0502-0.2069 2 a G:G A:A T:T C:G T:T T:G
邯麦9号 Hanmai 9 0.0259-0.2524 2 a G:G A:A T:T C:G T:T T:G
冀麦23 Jimai 23 0.0296-0.2923 2 a G:G A:A T:T C:G T:T T:G
石家庄11号 Shijiazhuang 11 0.3940-0.4798 2 a G:G A:A T:T C:G T:T T:G
[1] 屈振刚, 温树敏, 屈赟, 刘桂茹 . 小麦品种抗麦红吸浆虫鉴定与抗性分析. 植物遗传资源学报, 2011,12:121-124.
Qu Z G, Wen S M, Qu Y, Liu G R . Evaluation and identification of wheat varieties resistant to Sitodiplosis mosellana. J Plant Genet Resour, 2011,12:121-124 (in Chinese with English abstract).
[2] 温树敏, 赵玉新, 屈振刚, 刘桂茹, 王琳琳, 王金耀 . 小麦品种抗麦红吸浆虫鉴定及抗性评价. 河北农业大学学报, 2007,30(5):71-74.
Wen S M, Zhao Y X, Qu Z G, Liu G R, Wang L L, Wang J Y . The utilization and evaluation of resistance in wheat varieties to Sitadiplosis mosellana. J Agric Univ Hebei, 2007,30(5):71-74 (in Chinese with English abstract).
[3] Thomas J, Fineberg N, Penner G, McCartney C, Aung T, Wise I, McCallum B, . Chromosome location and markers ofSm1: a gene of wheat that conditions antibiotic resistance to orange wheat blossom midge. Mol Breed, 2005,15:183-192.
doi: 10.1007/s11032-004-5041-2
[4] Bruce T J, Hooper A M, Ireland L, Jones O T, Martin J L, Smart L E, Oakley J, Wadhams L J . Development of a pheromone trap monitoring system for orange wheat blossom midge,Sitodiplosis mosellana, in the UK. Pest Manag Sci, 2007,63:49-56.
doi: 10.1002/ps.1307 pmid: 17078014
[5] Flodrops Y, Taupin P . Soft wheat: combating the orange blossom midge. Perspect Agricol, 2010,365:46-50.
[6] Jacquemin G, Chavalle S, De P M . Forecasting the emergence of the adult orange wheat blossom midge,Sitodiplosis mosellana(Géhin), 2014,58:6-13.
[7] Gaafar N, Volkmar C, Cöster H, Spilke J . Susceptibility of winter wheat cultivars to wheat ear insects in central Germany. Gesunde Pflanzen, 2011,62:107-115.
doi: 10.1007/s10343-010-0227-5
[8] 赵中华, 王强, 朱晓明 . 2015年全国小麦病虫害发生新特点与防治新思路. 中国植保导刊, 2016,36(8):33-36.
Zhao Z H, Wang Q, Zhu X M . New patterns of wheat pest and disease infection in 2015 and new ideas for control in China. China Plant Prot, 2016,36(8):33-36 (in Chinese).
[9] 尹青云, 郑王义, 谢咸升, 李峰, 范绍强, 郑晓玲 . 小麦品种对麦红吸浆虫的抗性及抗性种质资源创新应用研究进展. 麦类作物学报, 2003,23(2):88-91.
doi: 10.7606/j.issn.1009-1041.2003.02.064
Yin Q Y, Zheng W Y, Xie X S, Li F, Fan S Q, Zheng X L . Advances in the study on wheat variety resistance to wheat midge and innovation and application of resistance germplasm resources. J Triticeae Crops, 2003,23(2):88-91 (in Chinese with English abstract).
doi: 10.7606/j.issn.1009-1041.2003.02.064
[10] 段云, 蒋月丽, 苗进, 巩中军, 李彤, 武予清, 罗礼智 . 麦红吸浆虫在我国的发生、危害及防治. 昆虫学报, 2013,56:1359-1366.
Duan Y, Jiang Y L, Miao J, Gong Z J, Li T, Wu Y Q, Luo L Z . Occurrence, damage and control of the wheat midge,Sitodiplosis mosellana(Diptera: Cecidomyiidae), in China. Acta Entomol Sin, 2013,56:1359-1366 (in Chinese with English abstract).
[11] Olfert O, Elliott R H, Hartley S . Non-native insects in agriculture: strategies to manage the economic and environmental impact of wheat midge,Sitodiplosis mosellana, in Saskatchewan. Biol Invasions, 2009,11:127-133.
doi: 10.1007/s10530-008-9324-0
[12] Gaafar N, El-Wakeil N, Volkmar C . Assessment of wheat ear insects in winter wheat varieties in central Germany. J Pest Sci, 2011,84:49-59.
doi: 10.1007/s10340-010-0325-2
[13] 屈振刚, 温树敏, 赵玉新, 路子云, 孙会 . 河北省麦红吸浆虫为害逐年加重的原因及防治对策. 河北农业科学, 2006,10(1):102-104.
Qu Z G, Wen S M, Zhao Y X, Lu Z Y, Sun H . Reason analysis and control strategies on the gradually increasedSitodiplosis mosellana Gehin damage in Hebei province. J Hebei Agric Sci, 2006,10(1):102-104 (in Chinese with English abstract).
[14] 郝燕冉, 温树敏, 王睿辉, 安雪娇, 刘桂茹 . 小麦品种冀麦24抗麦红吸浆虫QTL定位. 植物遗传资源学报, 2017,18:933-938.
Hao Y R, Wen S M, Wang R H, An X J, Liu G R . QTL analysis for midge resistance in wheat cultivar Jimai 24. J Plant Genet Resour, 2017,18:933-938 (in Chinese with English abstract).
[15] 黎丹 . 河北省麦红吸浆虫发生规律、成虫测报方法及品种抗虫性鉴定的研究. 河北农业大学研究生院硕士学位论文, 河北保定, 2012.
Li D . Study on Occurrence Regularity, the Method of Prediction of Adults, Analysis and Evaluation of Resistance of Wheat Midge, Sitodiplosis mosellana Géhin. MS Thesis of Agricultural University of Hebei, Baoding, Hebei, China, 2012 (in Chinese with English abstract).
[16] 仇松英, 史晓芳, 史忠良, 张松令, 谢福来, 高炜, 逯腊虎 . 小麦抗麦红吸浆虫品种遗传多样性的表型和SSR标记分析. 麦类作物学报, 2011,31:1050-1056.
doi: 10.7606/j.issn.1009-1041.2011.06.010
Qiu S Y, Shi X F, Shi Z L, Zhang S L, Xie F L, Gao W, Lu L H . Genetics diversity of wheat midge resistant varieties by phenotype and simple sequence repeat (SSR) markers analysis. J Triticeae Crops, 2011,31:1050-1056 (in Chinese with English abstract).
doi: 10.7606/j.issn.1009-1041.2011.06.010
[17] 瞿华香, 张玉烛, 张岳平, 曾翔, 屠乃美 . 分子标记辅助选择育种研究进展. 作物研究, 2008,22:355-358.
Qu H X, Zhang Y Z, Zhang Y P, Zeng X, Tu N M . Progress on marker-assisted selection. Crop Res, 2008,22:355-358 (in Chinese).
[18] 王昊龙, 韩俊杰, 李淼淼, 南富波, 李卫华 . 功能标记的开发及在禾谷类作物中的应用. 核农学报, 2014,28:1963-1971.
doi: 10.11869/j.issn.100-8551.2014.11.1963
Wang H L, Han J J, Li M M, Nan F B, Li W H . Development and application of functional markers in cereal crops. J Nuclear Agric Sci, 2014,28:1963-1971 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2014.11.1963
[19] Li G, Quiros C F . Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001,103:455-461.
doi: 10.1007/s001220100570
[20] 刘国圣, 张大乐 . 功能性分子标记在小麦育种中的应用. 生物技术通报, 2016,32(11):18-29.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.003
Liu G S, Zhang D L . The application of the functional molecular marker in wheat breeding. Biotechnol Bull, 2016,32(11):18-29 (in Chinese with English abstract).
doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.003
[21] Andersen J R, Lübberstedt T . Functional markers in plants. Trends Plant Sci, 2003,8:554-560.
doi: 10.1016/j.tplants.2003.09.010 pmid: 14607101
[22] 贺道华, 雷忠萍, 邢宏宜 . 功能标记的开发、特点和应用研究进展. 西北农林科技大学学报(自然科学版), 2009,37(1):110-116.
He D H, Lei Z P, Xing H Y . Development progress, characteristics and application of functional marker. J Northwest A&F Univ(Nat Sci Edn), 2009,37(1):110-116 (in Chinese with English abstract).
[23] 沈新莲, 张天真 . 作物分子标记辅助选择育种研究的进展与展望. 高技术通讯, 2003, ( 2):105-110.
Shen X L, Zhang T Z . Advances on molecular marker-assisted selection in crop. Chin High Technol Lett, 2003, ( 2):105-110 (in Chinese with English abstract).
[24] McKenzie R I H, Lamb R J, Aung T, Wise I L, Barker P, Olfert O O, McIntosh R I . Inheritance of resistance to wheat midge,Sitodiplosis mosellana, in spring wheat. Plant Breed, 2002,121:383-388.
doi: 10.1046/j.1439-0523.2002.745267.x
[25] Randhawa H S, Asif M, Pozniak C, Clarke J M, Graf R J, Fox S L, Humphreys D G, Knox R E, DePauw R M, Singh A K, Cuthbert R D, Hucl P, Spaner D, Gupta P . Application of molecular markers to wheat breeding in Canada. Plant Breed, 2013,132:458-471.
doi: 10.1094/PDIS-10-16-1421-RE pmid: 30682944
[26] Kassa M T, Haas S, Schliephake E, Lewis C, You F M, Pozniak C J, Krämer I, Perovic D, Sharpe A G, Fobert P R, Koch M, Wise I L, Fenwick P, Berry S, Simmonds J, Hourcade D, Senellart P, Duchalais L, Robert O, Förster J, Thomas J B, Friedt W, Ordon F, Uauy C, McCartney C A . A saturated SNP linkage map for the orange wheat blossom midge resistance gene Sm1. Theor Appl Genet, 2016,129:1507-1517.
doi: 10.1007/s00122-016-2720-4 pmid: 27160855
[27] Fox S L, Lamb R J, McKenzie R I H, Wise I L, Smith M A H, Humphreys D G, Brown P D, Townley-Smith T F, McCallum B D, Fetch T G, Menzies J G, Gilbert J A, Fernandez M R, Despins T, Lukow O, Niziol D . Registration of ‘Fieldstar’ hard red spring wheat. J Plant Regist, 2012,6:161-168.
doi: 10.3198/jpr2011.06.0329crc
[28] Blake N K, Stougaard R N, Weave D K, Sherman J D, Lanning S P, Naruoka Y, Xue Q, Martin J M, Talbert L,E . Identification of a quantitative trait locus for resistance to Sitodiplosis mosellana(Géhin), the orange wheat blossom midge, in spring wheat. Plant Breed, 2011,130:25-30.
doi: 10.1111/pbr.2011.130.issue-1
[29] 李建军, 李修炼, 成卫宁 . 小麦吸浆虫研究现状与展望. 麦类作物, 1999,19(3):52-55.
Li J J, Li X L, Cheng W N . Status and prospect on wheat blossom midge. Triticeae Crops, 1999,19(3):52-55 (in Chinese).
[30] 成卫宁, 李修炼, 李建军, 辛转霞 . 小麦品种抗麦红吸浆虫的研究现状与展望. 麦类作物学报, 2003,23(3):132-135.
doi: 10.7606/j.issn.1009-1041.2003.03.106
Cheng W N, Li X L, Li J J, Xin Z X . Status and prospect of studies on wheat blossom midge resistance of wheat varieties. J Triticeae Crops, 2003,23(3):132-135 (in Chinese with English abstract).
doi: 10.7606/j.issn.1009-1041.2003.03.106
[31] 赵菊香, 任芝英 . 小麦品种资源对麦红吸浆虫的抗性鉴定. 山西农业科学, 1990, ( 4):5-6.
Zhao J X, Ren Z Y . Evaluation of resistance in wheat cultivars and germplasms to Sitodiplosis mosellana(Géhin). J Shanxi Agric Sci, 1990, ( 4):5-6 (in Chinese).
[32] Zheng D S . Use of Italian wheat varieties in China. Genet Resour Crop Evol, 1993,40:137-142.
doi: 10.1007/BF00051118
[33] Lamb R J, McKenzie R I H, Wise I L, Barker P S, Smith M A H, Olfert O O . Resistance to Sitodiplosis mosellana(Diptera: Cecidomyiidae) in spring wheat (Graminae). Can Entomol, 2000,132:591-605.
doi: 10.4039/Ent132591-5
[34] Berzonsky W, Ding H, Haley S D, Harris M O, Lamb R J, McKenzie R I H, Ohm H W, Patterson F L, Peairs F B, Porter D R, Ratcliffe R H, Shanower T G . Breeding wheat for resistance to insects. Plant Breed Rev, 2003,22:221-297.
doi: 10.1007/s12298-019-00662-8 pmid: 31168238
[35] 张哲 . 小麦种质资源抗吸浆虫鉴定及分子标记筛选. 河北农业大学研究生院硕士学位论文, 河北保定, 2018.
Zhang Z . Screening for Midge-resistance Wheat Germplasm and Their Linked DNA-based Molecular Markers. MS Thesis of Agricultural University of Hebei, Baoding, Hebei, China, 2018 (in Chinese with English abstract).
[36] Ding H, Lamb R J, Ames N . Inducible production of phenolic acids in wheat and antibiotic resistance to Sitodiplosis mosellana. J Chem Ecol, 2000,26:969-985.
doi: 10.1023/A:1005412309735
[37] Abdel-Aal E S M, Hucl P, Sosulski F W, Graf R, Gillott C, Pietrzak L . Screening spring wheat for midge resistance in relation to ferulic acid content. J Agric Food Chem, 2001,49:3559-3566.
doi: 10.1021/jf010027h pmid: 11513628
[38] Wu X, Wu J, Luo Y, Bragg J, Anderson O, Vogel J, Gu Y Q . Phylogenetic, molecular, and biochemical characterization of caffeic acid O-methyltransferase gene family in Brachypodium distachyon. Int J Plant Genom, 2013,423189.
doi: 10.1155/2013/423189 pmid: 23431288
[39] 李小白, 向林, 罗洁, 胡标林, 田胜平, 谢鸣, 孙崇波 . 转录组测序(RNA-seq)策略及其数据在分子标记开发上的应用. 中国细胞生物学学报, 2013,35:720-726.
Li X B, Xiang L, Luo J, Hu B L, Tian S P, Xie M, Sun C B . The strategy of RNA-seq, application and development of molecular marker derived from RNA-seq. Chin J Cell Biol, 2013,35:720-726.
[40] 王智兰, 毛新国, 李昂, 昌小平, 刘惠民, 景蕊莲 . 小麦蛋白磷酸酶2A结构亚基基因TaPP2Aa的功能标记作图. 中国农业科学, 2011,44:2411-2421.
doi: 10.3864/j.issn.0578-1752.2011.12.001
Wang Z L, Mao X G, Li A, Chang X P, Liu H M, Jing R L . Functional marker mapping of protein phosphatase 2A structural subunit geneTaPP2Aa in common wheat. Sci Agric Sin, 2011,44:2411-2421 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2011.12.001
[41] Wu J H, Zeng Q D, Wang Q L, Liu S J, Yu S Z, Mu J M, Huang S, ·Sela H, Distelfeld A, Huang L L, Han D J, Kang Z S . SNP-based pool genotyping and haplotype analysis accelerate fine-mapping of the wheat genomic region containing stripe rust resistance gene Yr26. Theor Appl Genet, 2018,131:1481-1496.
doi: 10.1007/s00122-018-3092-8 pmid: 29666883
[42] 徐晓丹 . 5份小麦农家品种的抗白粉病基因分析及定位. 中国农业大学博士学位论文, 北京, 2017.
Xu X D . Identification and Mapping of Powdery Mildew Resistance Genes from Five Wheat Landraces. PhD Dissertation of China Agricultural University, Beijing, China, 2017 (in Chinese with English abstract).
[43] Liu S, Yeh C T, Tang H M, Nettleton D, Schnable P S . Gene mapping via bulked segregant RNA-seq (BSR-seq). PLoS One, 2012,7:e36406.
doi: 10.1371/journal.pone.0036406 pmid: 22586469
[44] Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L M, Kamoun S, Terauchi R . QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013,74:174-83.
doi: 10.1111/tpj.12105
[45] Sutherland O R W, Russell G B, Biggs D R, Lane G A . Insect feeding deterrent activity of phytoalexin isoflavonoids. Biochem Syst Ecol, 1980,8:73-75.
doi: 10.1016/0305-1978(80)90029-0
[46] Caballero P, Smith C M, Franczek F R, Fischer N H . Isoflavones from an insect-resistant variety of soybeans and the molecular structure of afrormosin. J Nat Prod, 1986,49:1126-1129.
doi: 10.1021/np50048a030
[47] Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W . Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Nat Acad Sci USA, 1984,81:8014-8018.
doi: 10.1073/pnas.81.24.8014 pmid: 6096873
[48] Lagudah E S, McFadden H, Singh R P, Huerta-Espino J, Bariana H S, Spielmeyer W . Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet, 2006,114:21-30.
doi: 10.1007/s00122-006-0406-z
[49] Lagudah E S, Krattinger S G, Herrera-Foessel S, Singh R P, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter L L, Keller B . Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet, 2009,119:889-898.
doi: 10.1007/s00122-009-1097-z
[50] 伍玲, 夏先春, 朱华忠, 李式昭, 郑有良, 何中虎 . CIMMYT 273个小麦品种抗病基因Lr34/Yr18/Pm38的分子标记检测. 中国农业科学, 2010,43:4553-4561.
Wu L, Xia X C, Zhu H Z, Li S Z, Zheng Y L, He Z H . Molecular characterization of Lr34/Yr18/Pm38 in 273 CIMMYT wheat cultivars and lines using functional markers. Sci Agric Sin, 2010,43:4553-4561 (in Chinese with English abstract).
[51] 张帆, 蒋雷, 鞠丽萍, 金秀锋, 王轩, 张晓科, 王宏礼, 付晓洁 . 一个普通小麦Trx 超家族新基因TaNRX的克隆与抗旱相关标记开发. 作物学报, 2014,40:29-36.
doi: 10.3724/SP.J.1006.2014.00029
Zhang F, Jiang L, Ju L P, Jin X F, Wang X, Zhang X K, Wang H L, Fu X J . Cloning a novel geneTaNRX of Trx superfamily and developing its molecular markers related to drought resistance in common wheat. Acta Agron Sin, 2014,40:29-36 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.00029
[52] 肖永贵, 何心尧, 刘建军, 孙道杰, 夏先春, 何中虎 . 中国冬小麦品种多酚氧化酶活性基因等位变异检测及其分布规律研究. 中国农业科学, 2008,4:954-960.
Xiao Y G, He X Y, Liu J J, Sun D J, Xia X C, He Z H . Molecular identification and distribution of the polyphenol oxidase genes in Chinese winter wheat cultivars. Sci Agric Sin, 2008,4:954-960 (in Chinese with English abstract).
[53] He X Y, Zhang Y L, He Z H, Wu Y P, Xiao Y G, Ma C X, Xia X C . Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet, 2008,116:213-221.
doi: 10.1007/s00122-007-0660-8
[54] 王亮, 穆培源, 徐红军, 庄丽, 桑伟, 聂迎彬, 韩新年, 邹波 . 新疆小麦品种黄色素含量基因(Psy-A1)等位变异的分子检测. 麦类作物学报, 2009,29:782-786.
doi: 10.7606/j.issn.1009-1041.2009.05.007
Wang L, Mu P Y, Xu H J, Zhuang L, Sang W, Nie Y B, Han X N, Zou B . Allelic variations ofPsy-A1 gene for yellow pigment content in Xinjiang wheat cultivars. J Triticeae Crops, 2009,29:782-786 (in Chinese with English abstract).
doi: 10.7606/j.issn.1009-1041.2009.05.007
[55] 胡凤灵, 何中虎, 葛建贵, 姜文武, 时萍, 夏先春 . 小麦品种黄色素含量和多酚氧化酶活性基因的分子标记检测. 麦类作物学报, 2011,31:47-53.
doi: 10.7606/j.issn.1009-1041.2011.01.009
Hu F L, He Z H, Ge J G, Jian W W, Shi P, Xia X C . Identification of genes for yellow pigment content and polyphenol oxidase activity in common wheat using molecular markers. J Triticeae Crops, 2011,31:47-53 (in Chinese with English abstract).
doi: 10.7606/j.issn.1009-1041.2011.01.009
[56] 张学林, 梅四伟, 郭天财, 王晨阳, 朱云集, 王永华 . 遗传和环境因素对不同冬小麦品种品质性状的影响. 麦类作物学报, 2010,30:249-253.
doi: 10.7606/j.issn.1009-1041.2010.02.012
Zhang X L, Mei S W, Guo T C, Wang C Y, Zhu Y J, Wang Y H . Effects of genotype and environment on winter wheat qualities. J Triticeae Crops, 2010,30:249-253 (in Chinese with English abstract).
doi: 10.7606/j.issn.1009-1041.2010.02.012
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[6] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[7] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[8] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[9] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[10] 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352.
[11] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[12] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[13] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[14] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[15] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!