作物学报 ›› 2015, Vol. 41 ›› Issue (07): 989-997.doi: 10.3724/SP.J.1006.2015.00989
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
张天泉**,郭爽**,邢亚迪,杜丹,桑贤春,凌英华,何光华*
ZHANG Tian-Quan**,GUO Shuang**,XING Ya-Di,DU Dan,SANG Xian-Chun,LING Ying-Hua,HE Guang-Hua*
摘要:
叶色突变体是研究高等植物光合作用、叶绿素代谢途径、叶绿体结构与功能分子机理的理想材料。本研究从EMS (ethyl methane sulfonate)处理的缙恢10号(Oryza sativa L. ssp. indica)诱变群体中发现了一个苗期呈现黄绿色、抽穗期渐变为淡绿色的叶色突变体,命名为yellow green leaf 9 (ygl9)。与野生型相比,ygl9苗期和分蘖期光合色素极显著降低,抽穗期光合色素显著降低,气孔长度、气孔导度和蒸腾速率极显著增加,净光合速率无明显变化。透射电镜观察表明,ygl9的嗜锇小体增多、基粒模糊、基质片层减少且疏松,但叶绿体结构基本完整。遗传分析显示该突变性状受一对隐性核基因调控。利用西农1A/ygl9 F2群体中的759株隐性单株,最终将YGL9定位在第3染色体短臂SSR标记S03-1和InDel标记Ind03-19之间,遗传距离分别为0.13 cM和0.07 cM,物理距离为63 kb。本研究为YGL9基因的克隆和功能分析奠定了基础。
[1]Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandamann G, Mache R, Coupland G, Kuntz M. Mutations in the Arabidopsis gene IMMUTANTS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell, 1999, 11: 57–68[2]Mao D H, Yu H H, Liu T M, Yang G Y, Xing Y Z. Two complementary recessive genes in duplicated segments control etiolation in rice. Theor Appl Genet, 2011, 122: 373–383[3]Lonosky P M, Zhang X S, Honavar V G. A proteomic analysis of maize chloroplast biogenesis. Plant Physiol, 2004, 134: 560–574[4]Zhao Y, Du L F, Yang S H, Li S C, Zhang Y Z. Chloroplast composition and structure differences in a chlorophyll-reduced mutant of oilseed rape seedlings. Acta Bot Sin, 2001, 43: 877–880[5]Falbel T G, Meehl J B, Staehelin L A. Severity of mutant phenotypein a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. Plant Physiol, 1996, 112: 821–832[6]Stockinger E J, Walling L L. A chlorophyll a/b-binding protein gene from soybean. Plant Physiol, 1994, 104: 1475–1476[7]黄晓群, 赵海新, 董春林, 孙业盈, 王平荣, 邓晓建. 水稻叶绿素合成缺陷突变体及其生物学研究进展. 西北植物学报, 2005, 25: 1685–1691 Huang X Q, Zhao H X, Dong C L, Sun Y Y, Wang P R, Deng X J. Chlorophyll-deficient rice mutants and their research advances in biology. Acta Bot Boreal, 2005, 25: 1685–1691(in Chinese with English abstract)[8]邓晓娟, 张海清, 王悦, 舒志芬, 王国槐, 王国梁. 水稻叶色突变基因研究进展. 杂交水稻, 2012, 27: 9–14 Deng X J, Zhang H Q, Wang Y, Shu Z F, Wang G W, Wang G L. Research progress of rice leaf coloration genes. Hybrid Rice, 2012, 27: 9–14 (in Chinese with English abstract)[9]Miyoshi K, Ito Y, Serizawa A, Kurata N. OsHAP3 genes regulate chloroplast biogenesis in rice. Plant J, 2003, 36: 532–540[10]Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805–818[11]Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463–472 [12]Zhang H, Li J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325–337[13]Wang P R, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J. Divinyl chlorophyll(ide) α can be converted to monovinyl chlorophyll(ide) α by a divinyl reductase in rice. Plant Physiol, 2010, 153: 994–1003[14]Dong H, Fei G L, Wu C Y, Wu F Q, Sun Y Y, Chen M J, Ren Y L, Zhou K N, Cheng Z J, Wang J L, Jiang L, Zhang X, Guo X P, Lei C L, Su N, Wang H Y, Wan J M. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol, 2013, 162: 1867–1880[15]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40[16]Chen H, Cheng Z J, Ma X D, Wu H, Liu Y L, Zhou K N, Chen Y L, Ma W Wi, Bi J C, Zhang X, Guo X P, Wang J L, Lei C L, Wu F Q, Lin Q B, Liu Y Q, Liu L L, Jiang L. A knockdown mutation of YELLOW-GREEN LEAF 2 blocks chlorophyll biosynthesis in rice. Plant Cell Rep, 2013, 32: 1855–1867[17]Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 148: 350–382[18]何瑞峰, 丁毅, 余金洪, 祖明生. 水稻温敏叶绿素突变体叶片超微结构的研究. 武汉植物学研究, 2001, 19: 1–5He R F, Ding Y, Yu J H, Zu M S. Study on leaf ultrastructure of the thermo-sensitive chlorophyll deficient mutant in rice. J Wuhan Bot Res, 2001, 19: 1–5 (in Chinese with English abstract)[19]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832[20]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325[21]桑贤春, 何光华, 张毅, 杨正林, 裴炎. 水稻PCR扩增模板的快速制备. 遗传, 2003, 25: 705–707Sang X C, He G H, Zhang Y, Yang Z L, Pei Y. The simple gain of templates of rice genomes DNA for PCR. Hereditas (Beijing), 2003, 25: 705–707 (in Chinese with English abstract)[22]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597–607[23]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181[24]Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172–175[25]李燕群, 高家旭, 肖云华, 李秀兰, 蒲翔, 孙昌辉, 王平荣, 邓晓建. 水稻ygl80黄绿叶突变体的遗传分析与目标基因精细定位. 作物学报, 2014, 40: 644–649Li Y Q, Gao J X, Xiao Y H, Li X L, Pu X, Sun C H, Wang P R, Deng X J. Genetic analysis and gene fine mapping of yellow-green leaf mutant ygl80 in rice. Acta Agron Sin, 2014, 40: 644–649 (in Chinese with English abstract)[26]Tian X Q, Ling Y H, Fang L K, Du P, Sang X C, Zhao F M, Li Y F, Xie R, He G H. Gene cloning and functional analysis of yellow green leaf 3 (ygl3) gene during the whole-plant growth stage in rice. Genes Genom, 2013, 35: 87–93[27]Deng X J, Zhang H Q, Wang Y, He F, Liu J L, Xiao X, Shu Z F, Li W, Wang G H, Wang G L. Mapped clone and functional analysis of leaf-color gene ygl7 in a rice hybrid (Oryza sativa L. ssp. indica). PLoS One, 2014, 9(6): e99564[28]刘梦梦, 桑贤春, 凌英华, 杜鹏, 赵芳明, 杨正林, 何光华. 水稻黄绿叶基因YGL4的遗传分析和分子定位. 作物学报, 2009, 35: 1405–1409Liu M M, Sang X C, Ling Y H, Du P, Zhao F M, Yang Z L, He G H. Genetic analysis and molecular mapping of a yellow-green leaf gene (YGL4) in rice (Oryza sativa L.). Acta Agron Sin, 2009, 35: 1405–1409 (in Chinese with English abstract)[29]Zhou K N, Ren Y L, Lü J, Wang Y H, Liu F, Zhou F, Zhao S L, Chen S H, Peng C, Zhang X, Guo X P, Cheng Z J, Wang J L, Wu F Q, Jiang L, Wan J M. Young Leaf Chlorosis 1, a chloroplast-localized gene required for chlorophyll and lutein accumulation during early leaf development in rice. Planta, 2013, 237: 279–292[30]Xing C, Wang G X, Huang J L, Wu J Z. Research on chlorophyll mutation of plants and molecular mechanism. Biotechnol Bull, 2008, 5: 10–12[31]吕典华, 宗学凤, 王三根, 凌英华, 桑贤春, 何光华. 两个水稻叶色突变体的光合特性研究. 作物学报, 2009, 35: 2304–2308Lü D H, Zong X F, Wang S G, Ling Y H, Sang X C, He G H. Characteristics of photosynthesis in two leaf color mutants of rice. Acta Agron Sin, 2009, 35: 2304–2308 (in Chinese with English abstract)[32]陶勤南, 吴良欢, 方萍, 陈峰. 不同叶色水稻叶绿体密度及基粒结构的计算机图象分析. 植物生理学报, 1992, 18: 126–132Tao Q N, Wu L H, Fang P, Chen F. Computer image analysis of rice chloroplast density and grana structure between different leaf color. Acta Photophysiol Sin, 1992, 18: 126–132 (in Chinese with English abstract)[33]欧立军. 水稻叶色突变体的高光合特性. 作物学报, 2011, 37: 1860–1867 Ou L J. High photosynthetic efficiency of leaf colour mutant of rice (Oryza sativa L.). Acta Agron Sin, 2011, 37: 1860–1867(in Chinese with English abstract)[34]Mullineaux P, Karpinski S. Signal transduction in response to excess light: Getting out of the chloroplast. Curr Opin Plant Biol, 2002, 5: 43–48 [35]Vandenabeele S, Van Der Kelen K, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers P, Slooten L, Montagu M V, Zabeau M, Inze D, Van Breusegem F. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci USA, 2003, 100: 16113–16118[36]王淑娟, 郭军, 段迎辉, 于秀梅, 康振生. 小麦叶绿体信号识别颗粒54基因的克隆与分析. 西北植物学报, 2008, 28: 1501–1506Wang S J, Guo J, Duan Y H, Yu X M, Kang Z S. Cloning and analysis of the chloroplast signal recognition particle 54 gene from wheat. Acta Bot Boreali-Occident Sin, 2008, 28: 1501–1506 (in Chinese with English abstract)[37]Klimyuk V I, Persello-Cartieaux F, Havaux M, Contard-David P, Schuenemann D, Meiherhoff K, Gouet P, Jones J D, Hoffman N E, Nussaume L. A chromodomain protein encoded by the Arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell, 1999, 11: 87–99[38]Zhang F T, Luo X D, Hu B L, Wan Y, Xie J K. YGL138(t), encoding a putative signal recognition particle 54 kDa protein, is involved in chloroplast development of rice. Rice, 2013, 6: 7[39]Christoph O R, Qian D, Amanda R V H, Adrian H E, Michael J W. ATP and AMP mutually influence their interaction with the ATP-binding cassette (ABC) adenylate kinase cystic fibrosis transmembrane conductance regulator (CFTR) at separate binding sites. J Biol Chem, 2013, 288: 27692–27701[40]张向前, 李晓燕, 朱海涛, 王涛, 解新明. 水稻阶段性返白突变体的鉴定和候选基因分析. 科学通报, 2010 55 (23): 2296–2301 Zhang X Q, Li X Y, Zhu H T, Wang T, Jie X M. Identification and candidate gene analysis of stage green-revertible albino mutant in rice(Oryza Sativa L.). Chin Sci Bull, 2010, 55(23): 2296–2301(in Chinese with English abstract) [41]Guo W J , Ho T H D. An abscisic acid-induced protein, HVA22, inhibits gibberellin-mediated programmed cell death in cereal aleurone cells. Plant Physiol, 2008, 147: 1710–1722[42]Agrawal G K, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol, 2001, 125: 1248–1257 |
[1] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[2] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[3] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[4] | 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227. |
[5] | 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868. |
[6] | 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293. |
[7] | 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172. |
[8] | 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60. |
[9] | 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79. |
[10] | 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367. |
[11] | 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005. |
[12] | 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996. |
[13] | 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213. |
[14] | 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227. |
[15] | 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058. |
|