欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (09): 1305-1312.doi: 10.3724/SP.J.1006.2015.01305

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

以RNA干扰γ-氨基丁酸转氨酶1基因(OsGABA-T1)表达提高稻米γ-氨基丁酸(GABA)含量

周露, 沈贝贝, 白苏阳, 刘喜, 江玲*, 翟虎渠, 万建民   

  1. 南京农业大学作物遗传与种质创新国家重点实验室, 江苏南京210095
  • 收稿日期:2015-02-02 出版日期:2015-09-12 网络出版日期:2015-09-12
  • 通讯作者: 江玲, E-mail:jiangling@njau.edu.cn; Tel: 025-84396516
  • 作者简介:第一作者联系方式: E-mail:2012101146@njau.edu.cn; Tel: 025-84399061
  • 基金资助:
    本研究由国家转基因生物新品种培育重大科技专项(2014ZX08001006), 农业部长江中下游粳稻生物学与遗传育种重点实验室, 长江流域杂交水稻协同创新中心, 江苏省植物基因工程技术研究中心和江苏省现代作物生产协同创新中心资助

RNA Interference of OsGABA-T1 Gene Expression Induced GABA Accumulation in Rice Grain

ZHOU Lu, SHEN Bei-Bei, BAI Su-Yang, LIU Xi, JIANG Ling*, ZHAI Hu-Qu, WAN Jian-Min   

  1. Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing 210095, China
  • Received:2015-02-02 Published:2015-09-12 Published online:2015-09-12

摘要: γ-氨基丁酸(GABA)是一种四碳非蛋白质氨基酸, 具有降血压等功能。为提高稻米中GABA含量, 利用RNA干扰技术, 构建水稻中GABA代谢关键酶GABA转氨酶1基因(OsGABA-T1)的干扰载体, 通过农杆菌介导法, 将其转化至粳稻品种宁粳1号中。实时荧光定量PCR检测结果表明导入的RNA干扰结构成功地降低了目的基因OsGABA-T1的表达, 且干扰家系中OsGABA-T2基因表达也随之下降。对转基因T3代稻米GABA含量测定发现, 糙米中GABA含量相对于对照增加了13倍以上, 精米中GABA含量也显著增加, 而其他主要氨基酸含量则没有明显变化。测定储藏4个月的转基因稻米发现, GABA含量仍具有较高水平。所以, 利用RNA干扰技术可有效提高稻米γ-氨基丁酸(GABA)含量, 为培育富含GABA的降血压功能性水稻品种提供基础。

关键词: γ, -氨基丁酸, RNA干扰, γ, -氨基丁酸转氨酶1, 转基因水稻

Abstract: γ-Aminobutyric acid (GABA) is a four-carbon non-protein amino acid and has been identified to have a function in reducing blood pressure. In order to increase GABA contents in rice grains, we constructed a RNA interference (RNAi) vector suppressing the expression of GABA transaminase 1 gene (OsGABA-T1). GABA transaminase is a key enzyme that converts GABA to succinate semialdehyde (SSA). The RNA interference vector was transformed into the callus of japonica cv. Ningjing 1. qRT-PCR analysis showed that OsGABA-T1 transcript abundance in the RNAi transgenic lines was effectively reduced, so did the homolog gene OsGABA-T2. The GABA contents of brown rice in T3 generation of RNAi lines were 13 times higher than these in Ningjing 1, so did in polished rice as well as brown rice and polished rice stored for four months of post-harvest in transgenic rice, while other main amino acid contents did not change much. In summary, this research provides a basis for breeding a rice variety which could contribute to reduce blood pressure due to the enrichment of GABA contents in rice seeds though effectively suppressing the expression of OsGABA-T1 gene by the RNA interference technique.

Key words: GABA, RNA interference, OsGABA-T1, Transgenic rice

[1] Kearney P M, Whelton M, Reynolds K, Muntner P, Whelton P K, He J. Global burden of hypertension: analysis of worldwide data. Lancet , 2005, 365: 217-223
[2] Zhang S J, Jackson M B. GABA-activated chloride channels in secretory nerve endings. Science , 1993, 259: 531-534
[3] Inoue K, Shirai T, Ochiai H, Kasao M, Hayakawa K, Kimura M. Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Eur J Clin Nutr , 2003, 57: 490-495
[4] Kajimoto O, Hirata H, Nakagawa S, Kajimoto Y, Hayakawa, Kimura M. Hypotensive effect of fermented milk containing γ-aminobutyric acid (GABA) in subjects with high normal blood pressure. Nippon Shokuhin Kagaku Kogaku Kaishi , 2004, 51: 79-86 (in Japanese)
[5] 张晖, 姚惠源, 姜元荣. 富含γ-氨基丁酸保健食品的应用与开发. 食品与工业发酵, 2002, 28(9): 69-72 Zhang H, Yao H Y, Jiang Y R. Development of the health food enriched with γ-aminobutyric acid (GABA). Food Fermentation Ind , 2002, 28(9): 69-72 (in Chinese with English abstract)
[6] 罗曦, 曾亚文, 杨树明, 杜娟, 普晓英, 吴殿星. 不同发芽时间下发芽稻谷和糙米不同部位γ-氨基丁酸含量差异. 食品科学, 2009, 30(13): 124-128 Luo X, Zeng Y W, Yang S M, Du J, Pu X Y, Wu D X. Changes in gamma-aminobutyric acid content in different parts of rice and brown rice during germination. J Food Sci , 2009, 30(13): 124-128 (in Chinese with English abstract)
[7] 杨树明, 罗曦, 曾亚文, 王雨辰, 普晓英, 杜娟. 不同水稻品种产量及其γ-氨基丁酸和抗性淀粉含量差异与相关性. 西南农业学报, 2009, 22: 236-240 Yang S M, Luo X, Zeng Y W, Wang Y C, Pu X Y, Du J. Variations and correlation of grain yield and γ-aminobutyric acid and resistant starch content in rice cultivars. Southwest China J Agric Sci , 2009, 22: 236-240 (in Chinese with English abstract)
[8] Ling V, Snedden W A, Shelp B J, Assmann S M. Analysis of a soluble calmodulin binding protein from fava bean roots: identification of glutamate decarboxylase as a calmodulin-activated enzyme. Plant Cell , 1994, 6: 1135-1143
[9] Schultz C J, Coruzzi G M. The aspartate aminotransferase gene family of Arabidopsis encodes isoenzymes localized to three distinct subcellular compartments. Plant J , 1995, 7: 61-75
[10] Van Cauwenberghe O R, Shelp B J. Biochemical characterization of partially purified gaba: pyruvate transaminase from Nicotiana tabacum . Phytochemistry , 1999, 52: 575-581
[11] Shelp B J, Bown A W, McLean M D. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci , 1999, 4: 446-452
[12] Busch K B, Fromm H. Plant succinic semialdehyde dehydrogenase. Cloning, purification, localization in mitochondria, and regulation by adenine nucleotides. Plant Physiol , 1999, 121: 589-597
[13] Fait A, Yellin A, Fromm H. GABA shunt deficiencies and accumulation of reactive oxygen intermediates: insight from Arabidopsis mutants. FEBS Lett, 2005, 579: 415-420
[14] Hoover G J, Van Cauwenberghe O R, Breitkreuz K E, Clark S M, Merrill A R, Shelp B J. Characteristics of an Arabidopsis glyoxylate reductase: general biochemical properties and substrate specificity for the recombinant protein, and developmental expression and implications for glyoxylate and succinic semialdehyde metabolism in planta. Can J Bot , 2007, 85: 883-895
[15] Simpson J P, Di Leo R, Dhanoa P K, Allan W L, Makhmoudova A, Clark S M, Hoover G J, Mullen R T, Shelp B J. Identification and characterization of a plastid-localized Arabidopsis glyoxylate reductase isoform: comparison with a cytosolic isoform and implications for cellular redox homeostasis and aldehyde detoxification. J Exp Bot , 2008, 59: 2545-2554
[16] Shelp B J, Bozzo G G, Trobacher C P, Zarei A, Deyman K L, Brikis C J. Hypothesis/review: contribution of putrescine to γ-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci , 2012, 193: 130-135
[17] Akama K, Akihiro T, Kitagawa M, Takaiwa F. Rice ( Oryza sativa ) contains a novel isoform of glutamate decarboxylase that lacks an authentic calmodulin-binding domain at the C-terminus. Biochim Biophys Acta , 2001, 1552: 143-150
[18] Akama K, Takaiwa F. C-terminal extension of rice glutamate decarboxylase ( OsGAD2 ) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells. J Exp Bot , 2007, 58: 2699-2707
[19] Akama K, Kanetou J, Shimosaki S, Kawakami K, Tsuchikura S, Takaiwa F. Seed-specific expression of truncated OsGAD2 produces GABA-enriched rice grains that influence a decrease in blood pressure in spontaneously hypertensive rats. Transgenic Res , 2009, 18: 865-876
[20] International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature , 2005, 436: 793-800
[21] Shimajiri Y, Ozaki K, Kainou K, Akama K. Differential subcellular localization, enzymatic properties and expression patterns of γ-aminobutyric acid transaminases ( GABA-Ts ) in rice ( Oryza sativa ). Plant Physiol , 2013, 170: 196-201
[22] Clark S M, Di Leo R, Dhanoa P K, Van Cauwenberghe O R, Mullen R T, Shelp B J. Biochemical characterization, mitochondrial localization, expression, and potential functions for an Arabidopsis γ-aminobutyrate transaminase that utilizes both pyruvate and glyoxylate. J Exp Bot , 2009, 60: 1743-1757
[23] Clark S M, Di Leo R, Van Cauwenberghe O R, Mullen R T, Shelp B J. Subcellular localization and expression of multiple tomato γ-aminobutyrate transaminases that utilize both pyruvate and glyoxylate. J Exp Bot , 2009, 60: 3255-3267
[24] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res , 1980, 8: 4321-4325
[25] Kathiresan A, Miranda J, Chinnappa C C, Reid D M. γ-aminobutyric acid promotes stem elongation in Stellaria longipes : the role of ethylene. Plant Growth Regul , 1998, 26: 131-137
[26] Satoshi K, Chiaki M, Mariko T, Erika A, Hiroshi E. Suppression of γ-aminobutyric acid (GABA) transaminases induces prominent GABA accumulation, dwarfism and infertility in the tomato ( Solanum lycopersicum L.). Plant Cell Physiol , 2013, 54: 793-807
[27] 刘巧泉, 姚泉洪, 王红梅, 顾铭洪. 转基因水稻胚乳中表达铁结合蛋白提高稻米铁含量. 遗传学报, 2004, 31: 518-524 Liu Q Q, Yao Q H, Wang H M, Gu M H. Endosperm-specific expression of the ferritin gene in transgenic rice ( Oryza sativa L.) results in increased iron content of milling rice. Acta Genet Sin , 2004, 31: 518-524 (in Chinese with English abstract)
[28] 于恒秀, 刘巧泉, 徐丽, 陆美芳, 蔡秀玲, 龚志云, 裔传灯, 王宗阳, 顾铭洪. 无抗性选择标记转基因软米和糯稻新品系的选育及中间试验. 作物学报, 2009, 35: 967-973 Yu H X, Liu Q Q, Xu L, Lu M F, Cai X L, Gong Z Y, Yi C D, Wang Z Y, Gu M H. Breeding and field performance of novel soft and waxy transgenic rice lines without selectable markers. Acta Agron Sin , 2009, 35: 967-973 (in Chinese with English abstract)
[1] 马硕, 焦悦, 杨江涛, 王旭静, 王志兴. 基因组测序技术解析耐除草剂转基因水稻G2-7的分子特征[J]. 作物学报, 2020, 46(11): 1703-1710.
[2] 董玉凤 王旭静 宋亚亚 靳 茜 王志兴. 利用基因拆分技术培育耐草甘膦转基因水稻的研究 [J]. 作物学报, 2019, 45(3): 344-353.
[3] 周香艳, 杨江伟, 唐勋, 文义凯, 张宁, 司怀军. amiRNA技术沉默C-3氧化酶编码基因StCPD对马铃薯抗旱性的影响[J]. 作物学报, 2018, 44(04): 512-521.
[4] 程伟,李和平,何水林,廖玉才. 寄主诱导的基因沉默提高植物真菌病害抗性研究进展[J]. 作物学报, 2017, 43(08): 1115-1121.
[5] 柴建芳*,王海波*,马秀英,张翠绵,董福双. ω-黑麦碱基因沉默对小麦1B/1R易位系加工品质的影响[J]. 作物学报, 2016, 42(05): 627-632.
[6] 胡丹丹,张帆,黄立钰,卓大龙,张帆,周永力,石英尧,黎志康. 胁迫相关蛋白激酶基因OsSAPK2调控水稻抗白叶枯病反应[J]. 作物学报, 2015, 41(08): 1191-1200.
[7] 王红梅,张昌泉,李钱峰,辛世文,刘巧泉,徐明良. 以谷蛋白GluA-2 信号肽增强外源蛋白在转基因水稻胚乳中的表达与积累[J]. 作物学报, 2015, 41(04): 524-530.
[8] 王光,吴智丹,张磊,刘凤权,邵敏. 水稻稻瘟病菌诱导表达启动子OsQ16p的克隆与功能分析[J]. 作物学报, 2012, 38(06): 980-987.
[9] 杨宙,陈浩,唐微,林拥军. 连续回交对消除农杆菌介导转化引起水稻体细胞变异的影响[J]. 作物学报, 2012, 38(05): 814-819.
[10] 张长伟, 凌英华, 桑贤春, 李平, 赵芳明, 杨正林, 李云峰, 方立魁, 何光华. 转苦瓜几丁质酶基因McCHIT1水稻及其稻瘟病抗性[J]. 作物学报, 2011, 37(11): 1991-2000.
[11] 尹明智, 官梅, 肖钢, 李栒, 官春云. DOF转录因子AtDof1.7 RNA干扰载体的构建及拟南芥的遗传转化[J]. 作物学报, 2011, 37(07): 1196-1204.
[12] 朱见明, 严学兵, 史莹华, 王成章. 紫花苜蓿光敏色素B基因片段克隆及RNA干扰表达载体的构建[J]. 作物学报, 2011, 37(02): 374-379.
[13] 周宝元, 丁在松, 赵明. PEPC过表达可以减轻干旱胁迫对水稻光合的抑制作用[J]. 作物学报, 2011, 37(01): 112-118.
[14] 汪结明,张建,江海洋,朱苏文,范军,程备久. RNA干扰水稻SBE3基因的表达对籽粒淀粉合成及其关键酶活性的影响[J]. 作物学报, 2010, 36(2): 313-320.
[15] 白永琴,康俊梅,孙彦,杨青川,李燕. 紫花苜蓿LEA蛋白基因ihpRNA表达载体构建及烟草转化[J]. 作物学报, 2010, 36(09): 1484-1489.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!