作物学报 ›› 2015, Vol. 41 ›› Issue (09): 1305-1312.doi: 10.3724/SP.J.1006.2015.01305
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
周露, 沈贝贝, 白苏阳, 刘喜, 江玲*, 翟虎渠, 万建民
ZHOU Lu, SHEN Bei-Bei, BAI Su-Yang, LIU Xi, JIANG Ling*, ZHAI Hu-Qu, WAN Jian-Min
摘要: γ-氨基丁酸(GABA)是一种四碳非蛋白质氨基酸, 具有降血压等功能。为提高稻米中GABA含量, 利用RNA干扰技术, 构建水稻中GABA代谢关键酶GABA转氨酶1基因(OsGABA-T1)的干扰载体, 通过农杆菌介导法, 将其转化至粳稻品种宁粳1号中。实时荧光定量PCR检测结果表明导入的RNA干扰结构成功地降低了目的基因OsGABA-T1的表达, 且干扰家系中OsGABA-T2基因表达也随之下降。对转基因T3代稻米GABA含量测定发现, 糙米中GABA含量相对于对照增加了13倍以上, 精米中GABA含量也显著增加, 而其他主要氨基酸含量则没有明显变化。测定储藏4个月的转基因稻米发现, GABA含量仍具有较高水平。所以, 利用RNA干扰技术可有效提高稻米γ-氨基丁酸(GABA)含量, 为培育富含GABA的降血压功能性水稻品种提供基础。
[1] Kearney P M, Whelton M, Reynolds K, Muntner P, Whelton P K, He J. Global burden of hypertension: analysis of worldwide data. Lancet , 2005, 365: 217-223 [2] Zhang S J, Jackson M B. GABA-activated chloride channels in secretory nerve endings. Science , 1993, 259: 531-534 [3] Inoue K, Shirai T, Ochiai H, Kasao M, Hayakawa K, Kimura M. Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Eur J Clin Nutr , 2003, 57: 490-495 [4] Kajimoto O, Hirata H, Nakagawa S, Kajimoto Y, Hayakawa, Kimura M. Hypotensive effect of fermented milk containing γ-aminobutyric acid (GABA) in subjects with high normal blood pressure. Nippon Shokuhin Kagaku Kogaku Kaishi , 2004, 51: 79-86 (in Japanese) [5] 张晖, 姚惠源, 姜元荣. 富含γ-氨基丁酸保健食品的应用与开发. 食品与工业发酵, 2002, 28(9): 69-72 Zhang H, Yao H Y, Jiang Y R. Development of the health food enriched with γ-aminobutyric acid (GABA). Food Fermentation Ind , 2002, 28(9): 69-72 (in Chinese with English abstract) [6] 罗曦, 曾亚文, 杨树明, 杜娟, 普晓英, 吴殿星. 不同发芽时间下发芽稻谷和糙米不同部位γ-氨基丁酸含量差异. 食品科学, 2009, 30(13): 124-128 Luo X, Zeng Y W, Yang S M, Du J, Pu X Y, Wu D X. Changes in gamma-aminobutyric acid content in different parts of rice and brown rice during germination. J Food Sci , 2009, 30(13): 124-128 (in Chinese with English abstract) [7] 杨树明, 罗曦, 曾亚文, 王雨辰, 普晓英, 杜娟. 不同水稻品种产量及其γ-氨基丁酸和抗性淀粉含量差异与相关性. 西南农业学报, 2009, 22: 236-240 Yang S M, Luo X, Zeng Y W, Wang Y C, Pu X Y, Du J. Variations and correlation of grain yield and γ-aminobutyric acid and resistant starch content in rice cultivars. Southwest China J Agric Sci , 2009, 22: 236-240 (in Chinese with English abstract) [8] Ling V, Snedden W A, Shelp B J, Assmann S M. Analysis of a soluble calmodulin binding protein from fava bean roots: identification of glutamate decarboxylase as a calmodulin-activated enzyme. Plant Cell , 1994, 6: 1135-1143 [9] Schultz C J, Coruzzi G M. The aspartate aminotransferase gene family of Arabidopsis encodes isoenzymes localized to three distinct subcellular compartments. Plant J , 1995, 7: 61-75 [10] Van Cauwenberghe O R, Shelp B J. Biochemical characterization of partially purified gaba: pyruvate transaminase from Nicotiana tabacum . Phytochemistry , 1999, 52: 575-581 [11] Shelp B J, Bown A W, McLean M D. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci , 1999, 4: 446-452 [12] Busch K B, Fromm H. Plant succinic semialdehyde dehydrogenase. Cloning, purification, localization in mitochondria, and regulation by adenine nucleotides. Plant Physiol , 1999, 121: 589-597 [13] Fait A, Yellin A, Fromm H. GABA shunt deficiencies and accumulation of reactive oxygen intermediates: insight from Arabidopsis mutants. FEBS Lett, 2005, 579: 415-420 [14] Hoover G J, Van Cauwenberghe O R, Breitkreuz K E, Clark S M, Merrill A R, Shelp B J. Characteristics of an Arabidopsis glyoxylate reductase: general biochemical properties and substrate specificity for the recombinant protein, and developmental expression and implications for glyoxylate and succinic semialdehyde metabolism in planta. Can J Bot , 2007, 85: 883-895 [15] Simpson J P, Di Leo R, Dhanoa P K, Allan W L, Makhmoudova A, Clark S M, Hoover G J, Mullen R T, Shelp B J. Identification and characterization of a plastid-localized Arabidopsis glyoxylate reductase isoform: comparison with a cytosolic isoform and implications for cellular redox homeostasis and aldehyde detoxification. J Exp Bot , 2008, 59: 2545-2554 [16] Shelp B J, Bozzo G G, Trobacher C P, Zarei A, Deyman K L, Brikis C J. Hypothesis/review: contribution of putrescine to γ-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci , 2012, 193: 130-135 [17] Akama K, Akihiro T, Kitagawa M, Takaiwa F. Rice ( Oryza sativa ) contains a novel isoform of glutamate decarboxylase that lacks an authentic calmodulin-binding domain at the C-terminus. Biochim Biophys Acta , 2001, 1552: 143-150 [18] Akama K, Takaiwa F. C-terminal extension of rice glutamate decarboxylase ( OsGAD2 ) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells. J Exp Bot , 2007, 58: 2699-2707 [19] Akama K, Kanetou J, Shimosaki S, Kawakami K, Tsuchikura S, Takaiwa F. Seed-specific expression of truncated OsGAD2 produces GABA-enriched rice grains that influence a decrease in blood pressure in spontaneously hypertensive rats. Transgenic Res , 2009, 18: 865-876 [20] International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature , 2005, 436: 793-800 [21] Shimajiri Y, Ozaki K, Kainou K, Akama K. Differential subcellular localization, enzymatic properties and expression patterns of γ-aminobutyric acid transaminases ( GABA-Ts ) in rice ( Oryza sativa ). Plant Physiol , 2013, 170: 196-201 [22] Clark S M, Di Leo R, Dhanoa P K, Van Cauwenberghe O R, Mullen R T, Shelp B J. Biochemical characterization, mitochondrial localization, expression, and potential functions for an Arabidopsis γ-aminobutyrate transaminase that utilizes both pyruvate and glyoxylate. J Exp Bot , 2009, 60: 1743-1757 [23] Clark S M, Di Leo R, Van Cauwenberghe O R, Mullen R T, Shelp B J. Subcellular localization and expression of multiple tomato γ-aminobutyrate transaminases that utilize both pyruvate and glyoxylate. J Exp Bot , 2009, 60: 3255-3267 [24] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res , 1980, 8: 4321-4325 [25] Kathiresan A, Miranda J, Chinnappa C C, Reid D M. γ-aminobutyric acid promotes stem elongation in Stellaria longipes : the role of ethylene. Plant Growth Regul , 1998, 26: 131-137 [26] Satoshi K, Chiaki M, Mariko T, Erika A, Hiroshi E. Suppression of γ-aminobutyric acid (GABA) transaminases induces prominent GABA accumulation, dwarfism and infertility in the tomato ( Solanum lycopersicum L.). Plant Cell Physiol , 2013, 54: 793-807 [27] 刘巧泉, 姚泉洪, 王红梅, 顾铭洪. 转基因水稻胚乳中表达铁结合蛋白提高稻米铁含量. 遗传学报, 2004, 31: 518-524 Liu Q Q, Yao Q H, Wang H M, Gu M H. Endosperm-specific expression of the ferritin gene in transgenic rice ( Oryza sativa L.) results in increased iron content of milling rice. Acta Genet Sin , 2004, 31: 518-524 (in Chinese with English abstract) [28] 于恒秀, 刘巧泉, 徐丽, 陆美芳, 蔡秀玲, 龚志云, 裔传灯, 王宗阳, 顾铭洪. 无抗性选择标记转基因软米和糯稻新品系的选育及中间试验. 作物学报, 2009, 35: 967-973 Yu H X, Liu Q Q, Xu L, Lu M F, Cai X L, Gong Z Y, Yi C D, Wang Z Y, Gu M H. Breeding and field performance of novel soft and waxy transgenic rice lines without selectable markers. Acta Agron Sin , 2009, 35: 967-973 (in Chinese with English abstract) |
[1] | 马硕, 焦悦, 杨江涛, 王旭静, 王志兴. 基因组测序技术解析耐除草剂转基因水稻G2-7的分子特征[J]. 作物学报, 2020, 46(11): 1703-1710. |
[2] | 董玉凤 王旭静 宋亚亚 靳 茜 王志兴. 利用基因拆分技术培育耐草甘膦转基因水稻的研究 [J]. 作物学报, 2019, 45(3): 344-353. |
[3] | 周香艳, 杨江伟, 唐勋, 文义凯, 张宁, 司怀军. amiRNA技术沉默C-3氧化酶编码基因StCPD对马铃薯抗旱性的影响[J]. 作物学报, 2018, 44(04): 512-521. |
[4] | 程伟,李和平,何水林,廖玉才. 寄主诱导的基因沉默提高植物真菌病害抗性研究进展[J]. 作物学报, 2017, 43(08): 1115-1121. |
[5] | 柴建芳*,王海波*,马秀英,张翠绵,董福双. ω-黑麦碱基因沉默对小麦1B/1R易位系加工品质的影响[J]. 作物学报, 2016, 42(05): 627-632. |
[6] | 胡丹丹,张帆,黄立钰,卓大龙,张帆,周永力,石英尧,黎志康. 胁迫相关蛋白激酶基因OsSAPK2调控水稻抗白叶枯病反应[J]. 作物学报, 2015, 41(08): 1191-1200. |
[7] | 王红梅,张昌泉,李钱峰,辛世文,刘巧泉,徐明良. 以谷蛋白GluA-2 信号肽增强外源蛋白在转基因水稻胚乳中的表达与积累[J]. 作物学报, 2015, 41(04): 524-530. |
[8] | 王光,吴智丹,张磊,刘凤权,邵敏. 水稻稻瘟病菌诱导表达启动子OsQ16p的克隆与功能分析[J]. 作物学报, 2012, 38(06): 980-987. |
[9] | 杨宙,陈浩,唐微,林拥军. 连续回交对消除农杆菌介导转化引起水稻体细胞变异的影响[J]. 作物学报, 2012, 38(05): 814-819. |
[10] | 张长伟, 凌英华, 桑贤春, 李平, 赵芳明, 杨正林, 李云峰, 方立魁, 何光华. 转苦瓜几丁质酶基因McCHIT1水稻及其稻瘟病抗性[J]. 作物学报, 2011, 37(11): 1991-2000. |
[11] | 尹明智, 官梅, 肖钢, 李栒, 官春云. DOF转录因子AtDof1.7 RNA干扰载体的构建及拟南芥的遗传转化[J]. 作物学报, 2011, 37(07): 1196-1204. |
[12] | 朱见明, 严学兵, 史莹华, 王成章. 紫花苜蓿光敏色素B基因片段克隆及RNA干扰表达载体的构建[J]. 作物学报, 2011, 37(02): 374-379. |
[13] | 周宝元, 丁在松, 赵明. PEPC过表达可以减轻干旱胁迫对水稻光合的抑制作用[J]. 作物学报, 2011, 37(01): 112-118. |
[14] | 汪结明,张建,江海洋,朱苏文,范军,程备久. RNA干扰水稻SBE3基因的表达对籽粒淀粉合成及其关键酶活性的影响[J]. 作物学报, 2010, 36(2): 313-320. |
[15] | 白永琴,康俊梅,孙彦,杨青川,李燕. 紫花苜蓿LEA蛋白基因ihpRNA表达载体构建及烟草转化[J]. 作物学报, 2010, 36(09): 1484-1489. |
|