欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (2): 313-320.doi: 10.3724/SP.J.1006.2010.00313

• 耕作栽培·生理生化 • 上一篇    下一篇

RNA干扰水稻SBE3基因的表达对籽粒淀粉合成及其关键酶活性的影响

汪结明,张建,江海洋,朱苏文,范军,程备久*   

  1. 安徽农业大学作物生物学安徽省重点实验室,安徽合肥230036
  • 收稿日期:2009-06-11 修回日期:2009-08-31 出版日期:2010-02-10 网络出版日期:2009-12-21
  • 通讯作者: 程备久, E-mail: cbj@ahau.edu.cn

Effects of RNA Interference of SBE3 Gene Expression on Starch Accumulation and Key Enzymes Activities Involved in Starch Synthesis in Transgenic Rice Grain

WANG Jie-Ming,ZHANG Jian,JIANG Hai-Yang,ZHU Su-Wen,FAN Jun,CHENG Bei-Jiu*
  

  1. Anhui Agricultural University, Anhui Provincial Key Laboratory of Crop Biology, Hefei 230036, China
  • Received:2009-06-11 Revised:2009-08-31 Published:2010-02-10 Published online:2009-12-21
  • Contact: CHANG Bei-Jiu, E-mail: cbj@ahau.edu.cn
  • Supported by:

    本研究由国家高技术研究发展计划(863计划)项目(2008AA10Z408,2006AA10Z1B4)资助。

摘要:

为探讨RNA干扰水稻SBE3基因的表达对籽粒淀粉合成及其关键酶活性的影响,以水稻品种中花11及以其为受体的转基因株系为材料,分别检测水稻SBE3基因的表达、籽粒发育各时期淀粉合成关键酶活性变化及直链、支链淀粉相对含量。结果表明,导入的SBE3基因RNA干扰结构成功地降低了目的基因的表达,并使其酶活性在籽粒发育各时期均显著降低并提前3 d达高峰期,且不同株系间具有差异。同时也使不同发育时期籽粒的ADPG-PPase和SSS及DBE活性均不同程度地显著降低,尤其以SSS和ADPG-PPase活性峰值降幅最大。此外,两个转基因水稻株系各时期籽粒直链淀粉含量均显著高于对照,而其成熟籽粒千粒重却显著降低,直链淀粉含量越高,千粒重越轻。

关键词: 水稻, RNA干扰, 淀粉分支酶3, 淀粉合成, 酶活

Abstract:

Rice cultivar “Zhonghua 11” (control) and its transgenic line were used as the experimental materials. The expression level of SBE3 gene, some related key enzymes activities, and the contents of amylose and amylopectin in different developmental stages of rice grain were measured. Results showed that the SBE3 gene expression level and the SBE activity were distinctly reduced by RNA interference (RNAi), but a little difference was observed between the two transgenic lines. The peak values of SBE activity reached three days earlier in transgenic rice than in non-transgenic control. RNAi of the SBE3 gene expression level also obviously reduced the enzyme activities of ADPG-PPase, SSS and DBE during different grain developmental stages, especially, the peak values of activities ofADPG-PPaseandSSS decreased to the largest extent. In addition, the content of amylose was significantly higher in different developmental stages in transgenic rice grain than that in the control, while thousand-grain weight was significantly reduced in mature grain, the general trend was that the higher the amylose content, the smaller the grain weight.

Key words: Rice, RNA interference, Starch branching enzyme3, Starch accumulation, Enzyme activity

[1]Emes M J, Bowsher C G, Hedley C, Burrell M M, Scrase-Field E S F, Tetlow I J. Starch synthesis and carbon partitioning in developing endosperm. J Exp Bot, 2003, 54: 569-575

[2]Shu X-L(舒小丽), Shu Q-Y(舒庆尧). Advance in starch biosynthesis and transgenic modification in crops. Biotechnol Bull (生物技术通报), 2004, (4): 19-26 (in Chinese with English abstract)

[3]Mu-Forster C. Physical associated of starch biosynthetic enzymes with starch granules of maize endosperm. Granule-associated forms of starch synthesis and starch branching enzyme. Plant Physiol, 1996, 111: 821-829

[4]Smith-White B J, Preiss J. Comparison of proteins of ADP-glucose pyrophosphorylase from diverse sources. J Mol Evol, 1992, 34: 449-464

[5]Baroja F E, Muñoz F J, Saikusa T, Rodríguez L M, Akazawa T, Pozueta R J. Sucrose synthase catalyzes the de novo production of ADP glucose linked to starch biosynthesis in heterotrophic tissues of plants. Plant Cell Physiol, 2003, 44: 500-509

[6]Martha G J, Kay D, Alan M M. Starch synthesis in the cereal endosperm. Curr Opin Plant Biol, 2003, 6: 215-222

[7]Wang W-J(王文静). The relationship between source-sink intensity and starch accumulation during grain filling period in two winter wheat cultivars with different spike types1. Acta Agron Sin (作物学报), 2004, 30(9): 916-921 (in Chinese with English abstract)

[8]Kawagoe Y, Kubo A, Satoh H, Takaiwa F, Nakamura Y. Roles of isoamylase and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm., 2005, 42(2): 164-74 Plant J

[9]Nakamura Y. Some properties of starch debranching enzymes and their possible role in amylopectin biosynthesis. Plant Sci-18, 1996, 121: 1

[10]Ball S, Morell M. From bacterial glycogen to starch: Understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol, 2003, 54: 207-233

[11]Buléon A, Colonna P, Planchot V, Ball S. Starch granules: Structure and biosynthesis. Int J Biol Macromol, 1998, 23: 85-112

[12]Zhang J(张建). Study on Cloning of Rice (Oryza sativa L.) Starch Synthesize Key Enzyme Gene and Molecular Regulation. MS Dissertation of Anhui Agricultural University, 2008 (in Chinese with English abstract)

[13]Li T(李天), Ryu O-G(大杉立), Tohru Y(山岸徹佐佐木治人). Effect s of weak light on rice starch accumulation and starch synthesis enzyme activities at grain filling stage. Chin J Rice Sci (中国水稻科学),2005, 19(6): 545-550 (in Chinese with English abstract)), Haruto S(

[14]Yu H-S(于寒松), Peng S(彭帅), Xie Y-H(谢远红), He Y-H(胡耀辉). Study on improvement of RNA isolating reagent kit-Trizol. Food Sci (食品科学), 2005, 26(11): 39-42 (in Chinese with English abstract)

[15]Douglas C D, Kuo T M, Felker F C. Enzymes of sucrose and hexose metabolism in developing kernels of two inbred of maize. Plant Physiol, 1988, 86: 1013-1019

[16]Zhang Z-M(张智猛), Dai L-X(戴良香), Hu C-H(胡昌浩), Dong S-T(董树亭), Wang K-J(王空军). Effect of nitrogen on starch accumulation and related enzyme activities in maize. Acta Agron Sin (作物学报), 2005, 31(7): 956-962 (in Chinese with English abstract)

[17]Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during the development of rice endosperm. Plant Sci, 1992, 82: 15-20

[18]Nakamura Y, Yuki K, Park S Y, Ohya T. Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol, 1989, 30: 833-839

[19]Cheng F-M(程方民), Jiang D-A(蒋德安), Wu P(吴平), Shi C-H(石春海). The dynamic change of starch synthesis enzymes during the grain filling stage and effects of temperature upon it. Acta Agron Sin (作物学报), 2001, 27(2): 201-206 (in Chinese with English abstract)

[20]Li T-G(李太贵), Shen B(沈波), Chen N(陈能), Luo Y-K(罗玉坤). Effect of Q-enzyme on the chalkiness formation of rice grain作物学报), 1997, 23(3): 338-344 (in Chinese with English abstract). Acta Agron Sin (

[21]Kubo A, Fujita N, Harada K, Matsuda T, Satoh H, Nakamura Y. The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiol, 1999, 121: 399-409

[22] Lü B(吕冰), Guo Z-G(郭志刚), Liang J-S(梁建生). Effects of the activities of key enzymes involved in starch biosynthesis on the fine structure of amylopectin in developing rice (Oryza sativa L.) endosperms. Sci China Ser C-Life Sci (中国科学·C辑), 2008, 38(8): 766-733 (in Chinese)

[23]Zhang Y-F(张永凤), Cheng B-J(程备久). A determination method for amylose content in half- grain maize. J Maize Sci (玉米科学), 2007, 15(1): 70-72 (in Chinese with English abstract)

[24]Su J(苏金), Wu R(吴瑞). Primary result of “Position effect” on transgene expression in transgenic rice. J Agric Biotechnol (农业生物技术学报), 1999, 7(4): 311-315 (in Chinese with English abstract)

[25]Okita T W-146, Sun J, Sakulringharoj C, Choi S B, Edwards G E, Kato C, Ito H, Matsui H. Increasing rice productivity and yield by manipulation of starch synthesis. Novartis Found Symp, 2001, 16: 135

[26]Cai Y-X(蔡一霞), Wang W(王维), Zhu Z-W(朱智伟), Zhang Z-J(张祖建), Yang J-C(杨建昌), Zhu Q-S(朱庆森). The physiochemical characteristics of amylopectin and their relationships to pasting properties of rice flour in different varieties. Sci Agric Sin (中国农业科学), 2006, 39(6): 1122-1129 (in Chinese with English abstract)

[27]Visser R G F, Jacobsen E. Towards modifying plants for altered starch content and composition. Plant Sci, 1994, 11: 63-68

[28]Liu B-G(刘保国), Ren C-F(任昌福). Relations between the accumulation characteristic of amylose of rice varieties and the Wx protein. J Southwest Agric Univ (西南农业大学学报), 1989, 11(4): 378-382 (in Chinese with English abstract)

[29] Van de Wal M, D’Hulst C, Vincken J P, Buleon A, Visser R G F, Ball S G. Amylose is synthesized in vitroby extension of and cleavage from amylopectin. J Biol Chem, 1998, 273: 22232-22240

[30]Ball S G, Van de Wal M, Visser R G F. Progress in understanding the biosynthesis of amylose. Trends Plant Sci, 1998, 3: 462-467

[31]He Z-H(何祖华), Shen Z-T(申宗坦). Effect of rice wx gene on substance accumulation of grain. Sci Agric Sin (中国农业科学), 1995, 28(4): 20-24 (in Chinese with English abstract)

[32]He X-Y(何秀英), Wu D-H(吴东辉), Wu S-Z(伍时照), Zhen H(甄海). Studies on the formation and accumulation of amylose content in rice. J South China Agric Univ (Nat Sci) (华南农业大学学报·自然科学版), 2003, 24(3): 9-12 (in Chinese with English abstract)

[33]Chen G, Wang Z, Liu Q Q, Xiong F, Gu Y J, Gu G J. Changes in the activities of enzymes involved in starch synthesis and accumulation in grain of transgenic rice with antisense wx gene. J Plant Physiol Mol Biol,2006, 32: 209-216

[34]Mizuno K, KawasakiI T, Shimada H. A alteration of the structural properties of starch components by the lack of an isoform of starch branching enzyme in rice seeds. J Biol Chem, 1993, 268: 19084-19091

[35]Mizuno K, KawasakiI T, Arai Y. Starch branching enzymes from immature rice seeds. J Biochem,1992, 112: 643-651

[36]Hiroaki Y, Yasunori N. Organ specificity of isoforms of starch branching enzyme in rice. Plant Cell Physiol, 1992, 33: 985-991

[37]Nishi A, Nakamura Y, Tanaka N. Biochemical and genetic analysis of the effect s of amylase extender mutation in rice endosperm. Plant Physiol, 2001, 127: 459-472

[38]Wu F-X(吴方喜), Xie H-A(谢华安), Su J(苏军), Hu C-Q(胡昌泉. Content of amylose in rice (Oryza sativa L.) changed by sense or antisense expression starch branching enzyme gene rbel. (福建农业学报), 2006, (2): 150-153 (in Chinese with English abstract)), Chen J-M(陈建民)Fujian J Agric Sci

[39]Zhang P(张鹏). Transgenic-Mediated Knockdown of the Expression of Genes Encoding Starch Branching Enzymes and Its Effects on Grain Quality in Rice (Oryza sativa L.). MS Dissertation of Yangzhou University, 2008 (in Chinese with English abstract)

[40]Chen Z-Z(陈忠正), Guo J(郭健), Li B(李斌), Wen H-T(文海涛), Zhao L(赵亮). Effects of RNAi silencing starch branch enzyme3 (sbe3) gene on rice amylose content. Food Sci (食品科学), 2007, 28(7): 291-295 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!