欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (2): 321-326.doi: 10.3724/SP.J.1006.2010.00321

• 耕作栽培·生理生化 • 上一篇    下一篇

油菜生育期氮肥素的吸收、分配及转运特性

张振华1,宋海星1,*,刘强1,荣湘民1,谢桂先1,彭建伟1,张玉平1,官春云2,陈社员2   

  1. 1 湖南农业大学资源环境学院,湖南长沙 410128;2 国家油料改良中心湖南分中心,湖南长沙 410128
  • 收稿日期:2009-04-01 修回日期:2009-10-01 出版日期:2010-02-10 网络出版日期:2009-12-21
  • 通讯作者: 宋海星, E-mail: haixingsong@yahoo.com.cn
  • 基金资助:
    本研究由国家自然科学基金项目(30971860),湖南省自然科学基金重点项目(07JJ3074),国家油菜产业技术体系建设项目(00509)和国家高技术研究发展计划(863计划)项目(2006BAD21B030资助。

Absorption, Distribution, and Translocation of Nitrogen at Growth Stages in Oilseed Rape

ZHANG Zhen-Hua1, SONG Hai-Xing1,*, LIU Qiang1, RONG Xiang-Min1, XIE Gui-Xian1,PENG Jian-Wei1,ZHANG Yu-Ping1,GUAN Chun-Yun2,CHEN She-Yuan2
  

  1. 1 College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; 2 National Center of Oilseed Crops Improvement, Hunan Branch, Changsha 410128, China
  • Received:2009-04-01 Revised:2009-10-01 Published:2010-02-10 Published online:2009-12-21
  • Contact: SONG Hai-Xing, E-mail: haixingsong@yahoo.com.cn

摘要:

Hoagland完全营养液的砂培条件下,采用15N示踪方法,研究了两个冬油菜品种不同生育期吸收的氮素在体内的分配、转运及损失情况。结果表明(两个品种平均值)83.5%苗期吸收的氮素和67.3%蕾薹期吸收的氮素分布在叶片中;79.1%开花期吸收的氮素分布在叶片和茎中,其中叶片中分布的氮占42.8%;而角果发育期吸收的氮素有42.4%直接分配到角果中,此时角果已成为氮素直接分配的比例最大的器官。苗期、蕾薹期、开花期和角果发育期吸收的氮素从营养器官向生殖器官的转运比例分别为34.4%44.3%41.2%31.7%,单株转运量分别为203.2325.8218.082.0 mg。在籽粒全氮中转运氮占65.1%,其中蕾薹期吸收后转运的氮素所占比例最大,为25.8%,其次是开花期和苗期,分别为16.9%15.9%,角果发育期比例最小,为6.4%。以上4个生育期吸收的氮素损失比例分别为24.0%10.5%11.7%7.3%,单株损失量分别为141.679.243.216.2 mg

关键词: 油菜, 氮素吸收, 氮素分配, 氮素转运

Abstract:

The differences of concentration and distribution of nitrogen in crop depend on organs and growth stages, and nitrogen redistribution in different organs will be occurred at different stages; these differences are related to the transfer of growth center. Consequently, the high crop yield depends not only on the high amount of nitrogen absorption, but also on the high efficiency of nitrogen redistribution. The objective of this study was to reveal the law of nitrogen absorption, distribution, and translocation in oilseed rape at different growth stages using two winter oilseed rape cultivars with the 15N labeling method in sand culture under Hoagland complete nutrient solution conditions. The results (average value from the two cultivars) indicated that 83.5% of nitrogen absorbed at the seedling stage, and 67.3% of nitrogen absorbed at the stem elongation stage, were distributed to leaves; 79.1% of the nitrogen absorbed at flowering stage was contained in leaves and stems, with 42.8% of it in the leaves. However, 42% of the nitrogen absorbed at siliquing stage was distributed to siliquae which is just the organ directly distributed the highest proportion of nitrogen absorbed at this stage. The nitrogen absorbed at four growth stages [seedling, stem elongation, flowering, and siliquing] translocated from the vegetative to the reproductive organs at 34.4%, 44.3%, 41.2%, and 31.7%, i.e. 203.2, 325.8, 218.0, and 82.0 mg plant-1, respectively. The translocated nitrogen from vegetative organs to the total nitrogen in seed accounted for 65.1%; among with 25.8% absorbed at the stem elongation stage, 16.9% absorbed at flowering stage, 15.9% absorbed at seedling stage, and 6.4% absorbed at siliquing stage, respectively. The proportion of nitrogen lost, after being absorbed at the four growth stages, was 24.0%, 10.5%, 11.7%, and 7.3 %, i.e. 141.6, 79.2, 43.2, and 16.2 mg plant-1, respectively. To sum up, nitrogen absorbed by roots at the earlier growth stages in oilseed rape was mainly translocated to leaves first, and then to the reproductive organ at the later growth stages.

Key words: Oilseed rape, Nitrogen absorption, Nitrogen distribution, Nitrogen translocation

[1] Martre P, Porter J R, Jamieson P D, Triboï E. Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat. Plant Physiol, 2003, 133: 1959–1967

[2] Gallais A, Floriot M, Pommel B, Prioul J L, Hirel B, Andrieu B, Coque M, Quilleré I. Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence. Eur J Agron, 2006, 24: 203–211

[3] Dong G-C(董桂春), Wang Y-L(王余龙), Zhou J(周娟), Zhang B(张彪), Zhang C-S(张传胜), Zhang Y-F(张岳芳), Yang L-X(杨连新), Huang J-H(黄建晔). Difference of nitrogen accumulation and translocation in conventional indica rice cultivars with different nitrogen use efficiency for grain output. Acta Agron Sin (作物学报), 2009, 35(1): 149–155 (in Chinese with English abstract)

[4] Zhang Y-L(张永丽), Yu Z-W(于振文). Effects of irrigation amount on nitrogen uptake, distribution, use, and grain yield and quality in wheat. Acta Agron Sin (作物学报), 2008, 34(5): 870–878 (in Chinese with English abstract)

[5] Peoples M B, Dalling M J. The Interplay between Protelysis and Amino Acid Metabolism during Senescence and Nitrogen Reallocation. In: Nooden L D, Leopold A C eds. Senescence Aging in Plant. San Diego: Academic Press, 1988. pp 181–217

[6] Thomas H. Enzymes of nitrogen mobilization in detached leaves of Lolium temulentum during senescence. Planta, 1978, 142: 161–169

[7] Malagoli P, Laine P, Rossato L, Ourry A. Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest. Ann Bot, 2005, 95: 853–861

[8] Zhang Y-H(张耀鸿), Wu J(吴洁), Zhang Y-L(张亚丽), Wang D-S(王东升), Shen Q-R(沈其荣). Genotypic variation of nitrogen accumulation and translocation in japonica rice (Oryza sativa L.)cultivars with different height. J Nanjing Agric Univ (南京农业大学学报), 2006, 29(2): 71–74 (in Chinese with English abstract)

[9] Zhang Y-H(张耀鸿), Zhang Y-L(张亚丽), Huang Q-W(黄启为), Xu Y-C(徐阳春), Shen Q-R(沈其荣). Effects of different nitrogen application rates on grain yields and nitrogen uptake and utilization by different rice cultivars. Plant Nutr Fert Sci (植物营养与肥料学报), 2006, 12(5): 616–621 (in Chinese with English abstract)

[10] Wang H, McCaig T N, Depauw R M, Clerke F R, Clerke J M. Physiological characteristics of recent Canada western red spring wheat cultivars: Components of grain nitrogen yield. Can J Plant Sci, 2003, 83(4): 699–707

[11] Gao J-F(高俊凤). Experimental Technique of Plant Physiology (植物生理学实验技术). Xi’an: World Publishing Company, 2000. pp 86–88 (in Chinese)

[12] Liu H-L(刘后利). Practical Cultivation in Oilseed Rape(实用油菜栽培学). Shanghai: Shanghai Scientific and Technical Publishers, 1987. pp 128-143, 236–237 (in Chinese)

[13] Séverine S, Nathalie M J, Christian J, Judith B, Christophe S. Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by 15N in vivo labeling throughout. Plant Physiol, 2005, 137: 1463–1473

[14] Palta J A, Fillery I R P. N application increases pre-anthesis contribution of dry matter to grain yield in wheat grown on a duplex soil. Aust J Agric Res, 1995, 46: 507–518

[15] Thomas K, Bertrand H, Emmanuel H, Frédéric D, Jacques L G. In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilization to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crops Res, 2007, 102: 22–32

[16] Rossato L, Le Dantec C, Laine P, Ourry A. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: identification, characterization and immunolocalization of a putative taproot storage glycoprotein. J Exp Bot, 2002, 53: 265–275

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[4] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[5] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[9] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[10] 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422.
[11] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[12] 阮俊梅, 张俊, 刘猷红, 董文军, 孟英, 邓艾兴, 杨万深, 宋振伟, 张卫建. 田间开放式增温对东北水稻氮素利用的影响[J]. 作物学报, 2022, 48(1): 193-202.
[13] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[14] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[15] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!