欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (09): 1361-1371.doi: 10.3724/SP.J.1006.2015.01361

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

桑树多聚半乳糖醛酸酶抑制蛋白基因MaPGIP1的克隆及功能分析

王晓红1, 2, 朱攀攀1, 梁燕梅1, 韩淑梅1, 赵爱春1, 王传宏1, 鲁成1, 余茂德1, *   

  1. 1 西南大学生物技术学院, 重庆 400716; 2 贵州省蚕业研究所, 贵州贵阳 550006
  • 收稿日期:2015-01-25 出版日期:2015-09-12 网络出版日期:2015-09-12
  • 通讯作者: 余茂德, E-mail:yumd@163.com, Tel: 023-68250191
  • 作者简介:第一作者联系方式: E-mail:swuwxhong@163.com
  • 基金资助:
    本研究由国家农业部公益性行业(农业)科研专项(201403064), 国家自然科学基金项目(31360190)和国家现代农业产业技术体系建设专项(CARS-22)资助

Molecular Cloning and Functional Analysis of Polygalacturonase-Inhibiting Protein Gene MaPGIP1 from Mulberry (Morus atropurpurea Roxb.)

WANG Xiao-Hong1, 2, ZHU Pan-Pan1, LIANG Yan-Mei1, HAN Shu-Mei1, ZHAO Ai-Chun1, WANG Chuan-Hong1, LU Cheng1, YU Mao-De1, *   

  1. 1 College of Biotechnology, Southwest University, Chongqing 400715, China; 2 Guizhou Sericultural Research Institute, Guiyang 550006, China
  • Received:2015-01-25 Published:2015-09-12 Published online:2015-09-12

摘要: 多聚半乳糖醛酸酶抑制蛋白(PGIP)是一种特异性结合和抑制真菌内切多聚半乳糖醛酸酶(endo-PG)活性的细胞壁结合蛋白。采用RT-PCR从嘉陵40 (Morus atropurpurea Roxb.)果实中扩增PGIP基因cDNA, 利用生物信息学的方法分析其编码蛋白的结构和功能。结果表明, 嘉陵40PGIP开放阅读框全长1017 bp, 编码338个氨基酸残基, 被命名为MaPGIP1。MaPGIP1蛋白分子量37.9 kD, 等电点为为6.65, 信号肽为N端26个氨基酸残基, 具有4个潜在的N-糖基化位点。MaPGIP1蛋白的核心区域由9个串联的LRRs基序组成。原核表达产物经SDS-PAGE分析, MaPGIP1蛋白以包涵体形式出现, Western blot证实了重组蛋白的特异性, 经过Ni-NTA柱纯化和分步透析复性后获得可溶性蛋白, 该蛋白能部分抑制果桑肥大性菌核病菌(Ciboria shiraiana) PG (CsPG)活性, 其最适pH值为4.5~5.0, 最适温度30℃。抑菌试验结果表明, MaPGIP1蛋白在果桑肥大性菌核病菌菌丝侵染油菜叶片过程中具有一定的抑制效果。

关键词: 桑树, 多聚半乳糖醛酸酶抑制蛋白, 序列分析, 原核表达, 蛋白活性

Abstract: Polygalacturonase-inhibiting protein (PGIP) is a defense protein found in plant cell wall. It is involved in plant defense against infection of pathogens by modulating/inhibiting the activity of endo-polygalacturonase. In this test, a pair of specific primers were designed based on PGIP genes of mulberry (Morus notabilis) in Morus Genome Database. The cDNA of Jialing 40 PGIP gene was amplified from fruit by RT-PCR. The sequences of mulberry PGIP, physic-chemical parameters of PGIP protein and phylogenetic relationship were analyzed by bioinformatics softwares. Using pET-28a(+) as a fused expression vector, a recombinant plasmid pET28a-PGIP containing the mature peptide of PGIP was constructed. Then its expression was induced in Escherichia coli BL21 (DE3) with IPTG. The samples induced at different times were collected and SDS-PAGE was used to analyze the protein expression in E. coli BL21 (DE3). After purification of the protein by Ni-Hind affinity column and Western blot, the PGIP gene expressed in E. coli BL21 (DE3). Finally its enzymatic activity was tested by bacteriostatic experiment. The full-length cDNA of PGIP from Jialing 40 fruit was obtained. Sequence analysis showed that the fragment contains an open reading frame of 1017 bp encoding 338 amino acid residues with a molecular mass of 37.9 kD, named MaPGIP1. This deduced protein has a pI of 6.65, a hydrophobic region of 26 amino acid residues in the N-terminal which was considered to be a signal peptide, with four potential N-glycosylation sites, and it center LRR structural domain is composed of nine tandem LRR motifs. Phylogenetic tree showed that Jialing 40 had the closest evolutionary relationship with M. notabilis. The prokaryotic expression results showed that efficient expression of PGIP protein could be realized after induction with 0.5 mmol L-1 IPTG in E. coli BL21 (DE3) for five hours at 28 °C. The SDS-PAGE displayed that the recombinant proteins only appeared as inclusion bodies. The inclusion bodies protein was purified by Ni-NTP affinity column and confirmed by Western blot. Soluble product could be refolded though stepwise dialysis strategies. The recombinant protein concentration was 0.58 μg μL-1 tested by Bradford method. MaPGIP1 partially inhibited CsPG with an optimum pH between 4.5 and 5.0, and an optimum temperature of 30°C. The preliminary infection experiment result showed that MaPGIP1 protein after renaturation had a certain inhibiting effect on Hypertrophy Sorosis Sclerotenisis infected by Ciboria shiraiana.

Key words: Mulberry, PGIP, Sequence analysis, Prokaryotic expression, Protein activity

[1] Juge N. Plant protein inhibitors of cell wall degrading enzymes. Trends Plant Sci , 2006, 11: 359-367
[2] Hamann T. Plant cell wall integrity maintenance as an essential component of biotic stress response mechanisms. Front Plant Sci , 2012, 3: 1-5
[3] Esquerre-Tugaye M T, Boudard G, Dumas B. Cell wall degrading enzymes, inhibitory proteins, and oligosaccharides participate in the molecular dialogue between plants and pathogens. Plant Physiol Biochem , 2000, 38: 157-163
[4] De Lorenzo G, D’Ovidio R, Cervone F. The role of polygalacturonase-inhibiting proteins ( PGIPs ) in defense against pathogenic fungi. Annu Rev Phytopathol , 2001, 39: 313-335
[5] D’Ovidio R, Mattei B, Robertia S, Bellincampi D. Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant-pathogen interactions. Biochim Biophys Acta , 2004, 1696: 237-244
[6] Misas-Villamil J C, van der Hoorn R A. Enzyme-inhibitor interactions at the plant-pathogen interface. Curr Opin Plant Biol , 2008, 11: 380-388
[7] Huang L, Liu Y, Yu X L, Xiang X, Cao J S. A polygalacturonase inhibitory protein gene ( BcMF19 ) expressed during pollen development in Chinese cabbage-pak-choi. Mol Biol Rep , 2011, 38: 545-552
[8] Shi H Y, Zhu L, Zhou Y, Li G, Chen L, Li X B. A cotton gene encoding a polygalacturonase inhibitor-like protein is specifically expressed in petals. Acta Biochim Biophys Sin , 2009, 41: 316-324
[9] Kanai M, Nishimura M, Hayashi M. A peroxisomal ABC transporter promotes seed germination by inducing pectin degradation under the control of ABI5. Plant J , 2010, 62: 936-947
[10] Yao C, Conway W S, Ren R, Smith D, Ross G S, Sams C E. Gene encoding polygalacturonase inhibitor in apple fruit is developmentally regulated and activated by wounding and fungal infection. Plant Mol Biol , 1999, 39: 1231-1241
[11] Di C X, Li M, Long F, Bai M Q, Liu Y L, Zheng X L, Xu S J, Xiang Y, Sun Z L, An L Z. Molecular cloning, functional analysis and localization of a novel gene encoding polygalacturonase-inhibiting protein in Chorispora bungeana . Planta , 2009, 231: 169-178
[12] Yao C L, Conway W S. Purification and characterization of a polygalacturonase-inhibiting protein from apple fruit. Biochem Cell Biol , 1995, 85: 1373-1377
[13] Deo A, Shastri N V. Purification and characterization of polygalacturonase-inhibitory proteins from Psidium guajava Linn. (Guava) fruit. Plant Sci , 2003, 164: 147-156
[14] Machinandiarena M F, Olivieri F P, Daleo G R. Isolation and characterization of a polygalacturonase-inhibiting protein from potato leaves. Accumulation in response to salicylic acid, wounding and infection. Plant Physiol Biochem , 2001, 39: 129-136
[15] Fish W W, Davis A R. The purification, physical/chemical characterization, and cDNA sequence of cantaloupe fruit polygalacturonase-inhibiting protein. Phytopathology , 2004, 94: 337-344
[16] Stotz H U, Powell A L, Damon S E, Greve L C, Bennett A B, Labavitch J M. Molecular characterization of a polygalacturonase inhibitor from Pyrus communis L. cv. Bartlett. Plant Physiol , 1993, 102: 133-138
[17] 武彦霞, 田建保, 曹秋芬, 樊新萍, 杨晓宇. 扁桃 PGIP 基因的克隆及其序列分析. 果树学报, 2008, 25: 54-59 Wu Y X, Tian J B, Cao Q F, Fan X P, Yang X Y. Cloning and sequencing of PGIP gene from prunus dulcis. J Fruit Sci , 2008, 25: 54-59 (in Chinese with English abstract)
[18] 李镇刚, 赵爱春, 王茜龄, 金筱耘, 李军, 余茂德. 芽孢杆菌中性植酸酶基因的原核表达及酶学性质分析. 蚕业科学, 2012, 38: 122-129 Li Z G, Zhao A C, Wang X L, Jin X Y, Li J, Yu M D. Prokaryotic expression and enzymological property analysis of neutral phytase gene from Bacillus sp. Sci Seric , 2012, 38: 122-129 (in Chinese with English abstract)
[19] 皇甫海燕. 甘蓝型油菜PGIP2的原核表达、蛋白功能及其遗传转化的研究. 湖南农业大学博士学位论文, 湖南长沙, 2011. pp 58-63 Huang-Fu H Y. Research on Prokaryotic Expression, Protein Function of Brassica napus PGIP2 and Its Genetic Transformation. PhD Dissertation of Hunan Agricultural University, Changsha, China, 2011. pp 58-63 (in Chinese with English abstract)
[20] 周立, 刘勇, 李健吾, 杨雪海, 曹阳. 小麦多聚半乳糖醛酸酶抑制蛋白对几种病原真菌抑制作用的研究. 植物病理学报, 1998, 28: 107-112 Zhou L, Liu Y, Li J W, Yang X H, Cao Y. On the inhibition effect of PGIP in wheat to some fungi. Acta Phytopathol Sin , 1988, 28: 107-112 (in Chinese with English abstract)
[21] Jones D A, Jones J D G. The role of leucine-rich repeats in plant defence. Adv Bot Res , 1997, 24: 89-167
[22] Stotz H U, Bishop J G, Bergmann C W. Identification of target amino acids that affect interactions of fungal polygalacturonases and their plant inhibitors. Physiol Mol Plant Pathol , 2000, 56: 117-130
[23] Kobe B, Kajava A V. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol , 2001, 11: 725-732
[24] Leckie F, Mattei B, Capodicasa C, Hemmings A, Nuss L, Aracri B, De Lorenzo G, Cervone F. The specificity of polygalacturonase-inhibiting protein (PGIP): a single amino acid substitution in the solvent-exposed β-strand/β-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability. EMBO J , 1999, 18: 2352-2363
[25] Di Matteo A, Federici L, Mattei B, Salvi G, Johnson K A, Savino C, De Lorenzo G, Tsernoglou D, Cervone F. The crystal structure of polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein involved in plant defense. Proc Natl Acad Sci USA , 2003, 100: 10124-10128
[26] Mattei B, Bernalda M S, Federici L, Roepstorff P, Cervone F, Boffi A. Secondary structure and post-translational modifications of the leucine-rich repeat protein PGIP (polygalacturonase- inhibiting protein) from Phaseolus vulgaris . Biochemistry , 2001, 40: 569-576
[27] Clark EDB. Refolding of recombinant proteins. Curr Opin Biotechnol , 1998, 9: 157-163
[28] Nalumpang S, Gotoh Y, Tsuboi H, Gomi K, Yamamoto H, Akimitsu K. Functional characterization of citrus polygalacturonase-inhibiting protein. J Gen Plant Pathol , 2002, 68: 118-127
[29] Powell A L, van Kan J, ten Have A, Visser J, Greve L C, Bennett A B, Labavitch J M. Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol Plant-Microbe Interact , 2000, 13: 942-950
[30] 杨丽华, 王金凤, 杜丽璞, 徐惠君, 魏学宁, 李钊, 马翎健, 张增艳. 抗全蚀病、根腐病的转 PgPGIP1 基因小麦的获得与鉴定. 作物学报, 2013, 39: 1576-1581 Yang L H, Wang J F, Du L P, Xu H J, Wei X N, Li Z, Ma L J, Zhang Z Y. Generation and characterization of PgPGIP1 transgenic wheat plants with enhanced resistance to take-all and common root rot. Acta Agron Sin , 2013, 39: 1576-1581 (in Chinese with English abstract)
[31] Desiderio A, Aracri B, Leckie F, Mattei B, Salvi G, Tigelaar H, Van Roekel J S C, Baulcombe D C, Melchers L S, Lorenzo G D, Cervone F. Polygalacturonas- inhibiting proteins(PGIPs) with different specificities are expressed in Phaseolus vulgaris . Mol Plant Microbe Interact , 1997, 10: 852-860
[32] Prabhu S A, Singh R, Kolkenbrock S, Sujeeth N, El Gueddari N E, Moerschbacher B M, Kini R K, Wagenknecht M. Experimental and bioinformatic characterization of a recombinant polygalacturonase-inhibitor protein from pearlmillet and its interaction with fungal polygalacturonases. J Exp Bot , 2014, 65: 5033-5047
[33] James J T, Dubery I A. Inhibition of polygalacturonase from Verticillium dahliae by a polygalacturonase-inhibiting protein from cotton. Phytochemistry , 2001, 57: 149-156
[34] Kemp G, Bergmann C W, Clay R, Van der Westhuizen A J, Pretorius Z A. Isolation of a polygalacturonase-inhibiting protein (PGIP) from wheat. Mol Plant-Microbe Interact , 2003, 16: 955-961
[35] 吕蕊花, 金筱耘, 赵爱春, 吉洁, 刘长英, 李军, 蒲龙, 鲁成, 余茂德. 果桑肥大性菌核病菌和油菜菌核病菌的交叉侵染、生物学特性及遗传关系. 作物学报, 2015, 41: 42-48 Lü R H, Jin X Y, Zhao A C, Ji J, Liu C Y, Li J, Pu L, Lu C, Yu M D. Cross infection, biological characteristics and genetic relationship between pathogens of hypertrophy sorosis sclerotenisis from mulberry and sclerotinia stem rot from oilseed rape. Acta Agron Sin , 2015, 41: 42-48 (in Chinese with English abstract)
[1] 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264.
[2] 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321.
[3] 陈夕军, 唐滔, 李丽丽, 陈宸, 陈煜文, 张亚芳, 左示敏. 水稻多聚半乳糖醛酸酶抑制蛋白家族OsPGIP结构及基因表达特征
分析
[J]. 作物学报, 2020, 46(12): 1884-1893.
[4] 余建,刘长英,赵爱春,王传宏,蔡雨翔,余茂德*. 桑树1-氨基环丙烷-1-羧酸氧化酶基因(MnACO)启动子功能分析[J]. 作物学报, 2017, 43(06): 839-848.
[5] 苏亚春,王竹青,李竹,刘峰,许莉萍,阙友雄,戴明剑,陈允浩. 甘蔗过氧化物酶基因ScPOD02的克隆与功能鉴定[J]. 作物学报, 2017, 43(04): 510-521.
[6] 喻时周,杨成龙,郭建春,段瑞军. 海马齿甜菜碱醛脱氢酶基因克隆、高效表达及酶学特性分析[J]. 作物学报, 2016, 42(10): 1569-1574.
[7] 强治全,梁雅珺,于正阳,杜娅,张帅,朱维宁,张林生. 小麦wzy2-1基因的克隆及功能分析[J]. 作物学报, 2016, 42(08): 1253-1258.
[8] 许玉超,侯喜林,徐玮玮,沈露露,张仕林,刘世拓,胡春梅. 紫色不结球白菜花色苷合酶基因BrcANS的克隆与表达分析[J]. 作物学报, 2016, 42(06): 850-859.
[9] 成伟,郑艳茹,葛丹凤,程光远,翟玉山,邓宇晴,彭磊,谭向尧,徐景升*. 甘蔗转录激活因子ScCBF1基因的克隆与表达分析[J]. 作物学报, 2015, 41(05): 717-724.
[10] 白云凤,聂江婷,张忠梁,李平,张维锋,闫建俊,冯瑞云,张耀. 籽粒苋AhNAD-ME的序列特征与表达[J]. 作物学报, 2014, 40(12): 2192-2197.
[11] 杨帆,陈其皎,高翔,赵万春,强琴琴,吴丹,孟敏. 一年生簇毛麦α-醇溶蛋白基因的分离、原核表达与功能鉴定[J]. 作物学报, 2014, 40(08): 1340-1349.
[12] 刘长英,吕蕊花,朱攀攀,范伟,李军,王晓红,李镇刚,王茜龄,赵爱春,鲁成,余茂德. 桑树EIN2基因的分离与表达[J]. 作物学报, 2014, 40(07): 1205-1212.
[13] 杨华,高翔,陈其皎,赵万春,董剑,李晓燕. 簇毛麦新型HMW-GS的序列分析及加工品质效应鉴定[J]. 作物学报, 2014, 40(04): 600-610.
[14] 谭秦亮,李长宁,杨丽涛,李杨瑞. 甘蔗ABA信号转导关键酶SoSnRK2.1基因的克隆与表达分析[J]. 作物学报, 2013, 39(12): 2162-2170.
[15] 杨丽华,王金凤,杜丽璞,徐惠君,魏学宁,李钊,马翎健,张增艳. 抗全蚀病、根腐病的转PgPGIP1基因小麦的获得与鉴定[J]. 作物学报, 2013, 39(09): 1576-1581.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!