欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (09): 1372-1383.doi: 10.3724/SP.J.1006.2015.01372

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆异黄酮及其组分含量的遗传分析与QTL检测

梁慧珍1, 余永亮1, 杨红旗1, 许兰杰1, 董薇1, 牛永光1, 张海洋1, 刘学义2, 方宣钧3   

  1. 1河南省农业科学院芝麻研究中心, 河南郑州 450002; 2山西省农业科学院经济作物研究所, 山西汾阳 032200; 3 海南省热带农业资源开发利用研究所, 海南三亚 572025
  • 收稿日期:2015-03-03 出版日期:2015-09-12 网络出版日期:2015-09-12
  • 作者简介:第一作者联系方式: E-mail:lhzh66666@163.com, Tel: 0371-65751589
  • 基金资助:
    本研究由河南省科技创新杰出人才计划(114200510002), 国家转基因生物新品种培育科技重大专项(2014ZX0800402B), 河南省重点科技攻关计划项目(132102110091)和河南省农业科学院专项资金(201315603, 201315615, 201218334)资助

Genetic Analysis and QTL Mapping of Isoflavone Contents and Its Components in Soybean

LIANG Hui-Zhen1, YU Yong-Liang1, YANG Hong-Qi1, XU Lan-Jie1, DONG Wei1, NIU Yong-Guang1, ZHANG Hai-Yang1, LIU Xue-Yi2, FANG Xuan-Jun3   

  1. 1 Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; 2 Industrial Crop Institute, Shanxi Academy of Agricultural Sciences, Fenyang 032200, China; 3 Hainan Provincial Institute of Tropical Agriculture Resources, Sanya 572025, China
  • Received:2015-03-03 Published:2015-09-12 Published online:2015-09-12

摘要: 以栽培大豆晋豆23为母本, 以山西农家品种大豆灰布支黑豆为父本杂交衍生的447个RIL作为供试群体构建遗传图谱, 利用高效液相色谱法定性、定量测定样品中的异黄酮及其组分含量。采用主基因+多基因混合遗传分离分析法和WinQTLCart 2.5复合区间作图法, 对大豆异黄酮及其组分含量进行混合遗传分析和QTL定位。结果表明, 大豆苷、黄豆苷元、染料木素、染料木苷、大豆苷元和异黄酮总含量分别受4、4、2、3、2和2对主基因控制, 并有多基因修饰。检测到44个与大豆异黄酮及其组分含量相关的QTL, 与大豆苷、染料木素、黄豆苷元、大豆苷元、染料木苷和异黄酮总含量相关的QTL分别有10、9、4、7、8和6个。连续2年分别检测到与大豆苷、染料木苷、黄豆苷元和异黄酮关联, 分别位于标记区间satt430~satt359、satt038~satt570、satt197~sat_128和satt249~satt285的稳定表达QTL, 可尝试用于分子标记辅助育种。

关键词: 大豆, 异黄酮含量, 遗传分析, QTL

Abstract: A set of 447 recombinant inbred lines (RILs) derived from the cross between cultivars Jingdou 23 (female parent) and Huibuzhi (semi-wild, male parent) was used to construct a new map. Isoflavone content and its components were quantitatively and qualitatively evaluated by using high performance liquid chromatography (HPLC). We analyzed inheritance and detected QTLs for isoflavone content and its components in soybean seeds using major gene plus polygene mixed inheritance analysis and WinQTLCart 2.5 composite interval mapping. The results showed that daidzin, daidzein, genistein, genistin, glycitin, and total isoflavone contents were controlled by four, four, two, three, two and two main-genes, respectively. However, polygene effects were not detected in the study. Forty-four quantitative trait loci (QTLs) for isoflavone contents and its components were mapped, including ten for daidzin, nine for genistein, four for daidzein, seven for glycitin, eight for genistin, and six for total isoflavone content. The stable QTLs related to daidzin, genistin, glycitin, isoflavone content were respectively detected to be located in the intervals of satt430-satt359, satt038-satt570, satt197-sat_128, and satt249-satt285 during two years, which could be used in marker-assisted selection (MAS) for soybean breeding.

Key words: Soybean, Isoflavone content, Genetic analysis, Quantitative trait loci

[1] Patel R P, Boersma B J, Crawford J H, Hogg N, Kirk M, Kalyanaraman B, Paeks D A, Barnes S, Darley-Usmar V. Antioxidant mechanisms of isoflavones in lipid systems: paradoxical effects of peroxyl radical scavenging. Free Radical Biol Med , 2001, 31: 1570-1581
[2] Arean S, Rappa C, Del Frate E, Cenci S, Villani C. A natural alternative to menopausal hormone replacement therapy. Phytoestrogens Minerva Ginecol, 2002, 54: 53-57
[3] Kritz-Silverstein D, Goodman-Gruen D L. Usual dietary isoflavone intake, bone mineral density, and bone metabolism in postmenopausal women. J Women’s Health Gend Based Med , 2002, 11: 69-78
[4] Atkinson C, Compston J E, Day N E, Owsett M, Bingham S A. The effects of phytoestrogen isoflavones on bone density in women: a double-blind, randomized, lacebo-controlled trial. Am J Clinic Nutr , 2004, 79: 326-333
[5] Lamartiniere C A, Cotroneo M S, Fritz W A, Wang J, Mentor- Marcel R, Elgavish A. Genistein chemoprevention: timing and mechanisms of action in murine mammary and prostate. J Nutr , 2002, 132: 552-558
[6] Liggins J, Mulligan A, Runswick S, Bingham S A. Daidzein and genistein content of cereals. Clinic Nutr , 2002, 56: 961-966
[7] Munro I C, Harwood M, Hlywka J J, Stephen A M, Doull J, Flamm W G, Adlercreutz H. Soy isoflavones: a safety review. Nutr Rev , 2003, 61: 1-33
[8] Ma D F, Qin L Q, Wang P Y, Katoh R. Soy isoflavone intake increases bone mineral density in the spine of menopausal women: Metaanalysis of randomized controlled trials. Clin Nutr , 2008, 27: 57-64
[9] Nagata C. Factors to consider in the association between soy isoflavone intake and breat cancer risk. J Epidemiol , 2010, 20: 83-89
[10] Kudou S, Fleury Y, Welti D, Magnolato D, Uchida T, Kitamura K, Okubo K. Malonyl isoflavone glycosides in soybean seeds ( Glycine max L. Merr.). Agric Biol Chem , 1991, 55: 2227-2233
[11] Li W D, Liang H Z, Lu W G, Wang S F, Yang Q C, Yang C Y, Liu Y F. Studies on the correlations between isoflavone contents in soybean seed and the eco-physiological factors. Agric Sci China , 2004, 3: 340-348
[12] Liang H Z, Li W D, Fang X J, Cao Y N, Wang H. Genetic analysis of embryo, cytoplasm and maternal effects and their environment interactions for isoflavone content in soybean [ Glycine max (L.) Merr.]. Agric Sci China , 2007, 6: 1051-1059
[13] Liang H Z, Li W D, Cao Y N, Wang H. Genetic analysis of combining abilities and heterosis for the contents of soybean isoflavone and its components among the soybean varieties [ Glycine max (L.) Merr.]. Agric Sci China , 2005, 4: 101-105
[14] Liang H Z, Yu Y L, Wang S F, Lian Y, Wang T F, Wei Y L, Gong P T, Liu X Y, Fang X J, Zhang M C. QTL mapping of isoflavone, oil and protein contents in soybean ( Glycine max L. Merr.). Agric Sci China , 2010, 9: 1108-1116
[15] Meksem K, Njiti V N, Banz W J, Iqbal M J, Kassem M M, Hyten D L, Yuang J, Winters T A, Lightfoot D A. Genomic regions that underlie soybean seed isoflavone content. J Biomed Biotechnol , 2001, 1: 38-44
[16] Kassem M A, Shultz J, Meksem K, Cho Y, Wood A J, Iqbal M J, Lightfoot D A. An updated ‘Essex’ by ‘Forrest’ linkage map and first composite interval map of QTL underlying six soybean traits. Theor Appl Genet , 2006, 113: 1015-1026
[17] Primomo V S, Poysa V, Ablett G R, Jackson C J, Gijzen M, Rajcan I. Mapping QTL for individual and total isoflavone content in soybean seeds. Crop Sci , 2005, 45: 2454-2464
[18] Gutierrez-Gonzale J J, Wu X L, Zhang J, Lee J D, Ellersieck M, Shannon J G, Yu O, Nguyen T H, Sleper A D. Genetic control of soybean seed isoflavone content: Importance of statistical model and epistasis in complex traits. Theor Appl Genet , 2009, 119: 1069-1083
[19] Gutierrez-Gonzale J J, Wu X, Gillman J, Lee J, Zhong R, Yu O, Shannon G, Ellersieck M, Nguyen H, Sleper D. Intricate environment-modulated genetic networks control isoflavone accumulation in soybean seeds. Plant Biol , 2010, 10: 105-120
[20] Gutierrez-Gonzale J J, Vuong D T, Zhong R, Yu O, Lee J, Shannon G, Ellersieck M, Nguyen T H, Sleper A D. Major locus and other novel additive and epistatic loci involved in modulation of isoflavone concentration in soybean seeds. Theor Appl Genet , 2011, 123: 1375-1385
[21] Smallwood C. Detection of quantitative trait loci for marker- assisted selection of soybean isoflavone genistein. TN Res. Creat. Exch. 2012
[22] Zeng G, Li D, Han Y, Teng W, Wang J, Qiu L, Li W. Identification of QTL underlying isoflavone contents in soybean seeds among multiple environments. Theor Appl Genet , 2009, 118: 1455-1463
[23] Yoshikawa T, Okumoto Y, Ogata D, Sayama T, Teraishi M, Terai M, Toda T, Yamada K, Yagasaki K, Yamada N, Tsukiyama T, Yamada T, Tanisaka T. Transgressive segregation of isoflavone contents under the control of four QTLs in a cross between distantly related soybean varieties. Breed Sci , 2010, 60: 243-254
[24] Yang K, Moon J, Jeong N, Chun H, Kang S, Back K, Jeong S. Novel major quantitative trait loci regulating the content of isoflavone in soybean seeds. Genes Genom , 2011, 33: 685-692
[25] Zhang H J, Li J W, Liu Y J, Jiang W Z, Du X L, Li L, Li X W, Su L T, Wang Q Y, Wang Y. Quantitative trait loci analysis of individual and total isoflavone contents in soybean seeds. J Genet , 2014, 93: 331-338
[26] 张晶莹, 葛一楠, 孙君明, 韩粉霞, 于福宽, 闫淑荣, 杨华. 多环境条件下大豆异黄酮主要组分的QTL定位. 中国农业科学, 2012, 45: 3909-3920 Zhang J Y, Ge Y N, Sun J M, Han F X, Yu F K, Yan S R, Yang H. Identification of QTLs for major isoflavone components among multiple environments in soybean seeds. Sci Agric Sin , 2012, 45: 3909-3920 (in Chinese with English abstract)
[27] Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5 User Manual. Department of Statistics, North Carolina State University, Raleigh, NC, 2005
[28] 曹锡文, 刘兵, 章元明. 植物数量性状分离分析Windows 软件包SEA的研制. 南京农业大学学报, 2013, 36(6): 1-6 Cao X W, Liu B, Zhang Y M. SEA: a software package of segregation analysis of quantitative traits in plants. J Nanjing Agric Univ , 2013, 36(6): 1-6 (in Chinese with English abstract)
[29] Sun J M, Sun B L, Han F X, Yan S R, Yang H, Akio K. Rapid HPLC method for determination of 12 isoflavone components in soybean seeds. Agric Sci China , 2011, 10: 70-77
[30] 王珍. 大豆SSR遗传图谱构建及重要农艺性状QTL分析. 广西大学硕士学位论文, 广西南宁, 2004 Wang Z. Construction of Soybean SSR Based Map and QTL Analysis of Important Agronomic Traits. MS Thesis of Guangxi University, Nanning, China, 2004 (in Chinese with English abstract)
[31] 梁慧珍. 大豆子粒性状的遗传及QTL分析. 西北农林科技大学博士学位论文, 陕西杨凌, 2006 Liang H Z. Genetic Analysis and QTL Mapping of Seed Traits in Soybean [ Glycine max (L.) Merr]. PhD Dissertation of Northwest A&F University. Yangling, China, 2006 (in Chinese with English abstract)
[32] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-14
[33] Chiari L, Naoe L K, Piovesan N D, José I C, Cruz C D, Moreira M A, Barros E G. Genetic parameters relating isoflavone and protein content in soybean seeds. Euphytica , 2004, 138: 55-60.
[34] Hagiwara W E, Onish K, Takamure I, Sano Y. Transgressive segregation due to linked QTLs for grain characteristics of rice. Euphytica , 2006, 150: 27-35
[35] Panthee D R, Kwanyuen P, Sams C E, West D R, Saxton A M, Pantalone V R. Quantitative trait loci for β-conglycinin (7S) and glycinin (11S) fractions of soybean storage protein. J Am Oil Chem Soc , 2004, 81: 1558-9331
[36] 王英, 程立锐, 冷建田, 吴存祥, 侯文胜, 韩天富. 开花后不同光周期条件下大豆农艺性状和品质性状的QTL分析. 作物学报, 2010, 36: 1092-1099 Wang Y, Cheng L R, Leng J T, Wu C X, Hou W S, Han T F. QTL mapping of agronomic and quality traits in soybean under different post-flowering photoperiods. Acta Agron Sin , 2010, 36: 1092-1099 (in Chinese with English abstract)
[37] Jansen R C, Van Ooijien J M, Stam P, Lister C, Dean C. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet , 1995, 91: 33-37
[38] Kassem A, Meksem K, Iqbal M, Njiti V, Banz W, Winters T, Wood A, Lightfoot D. Definition of soybean genomic regions that control seed phytoestrogen amounts. J Biomed Biotechnol , 2004, 1: 52-60
[39] 王春娥. 我国大豆资源豆腐豆乳得率和异黄酮含量的遗传变异及两类性状的QTL分析. 南京农业大学博士学位论文, 江苏南京, 2008 Wang C E. Genetic Variability of Toftu and Soymilk Output and Isoflavone Content in Soybean Germplasm from China and Qtl Mapping of the Two Kinds of Traits. PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2008 (in Chinese with English abstract)
[40] 王金社, 李海旺, 赵团结, 盖钧镒. 重组自交家系群体4对主基因加多基因混合遗传模型分离分析方法的建立. 作物学报, 2010, 36: 191-201 Wang J S, Li H W, Zhao T J, Gai J Y. Establishment of segregation analysis of mixed inheritance model with four major genes plus polygenes in recombinant inbred lines population. Acta Agron Sin , 2010, 36: 191-201 (in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[12] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[13] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[14] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[15] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!