欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (01): 43-50.doi: 10.3724/SP.J.1006.2016.00043

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

我国棉花品种区域试验重复次数和试点数量的设计

许乃银1,金石桥2,李健1   

  1. 1 江苏省农业科学院经济作物研究所 / 农业部长江下游棉花与油菜重点实验室,江苏南京 210014;2 全国农业技术推广服务中心,北京 100125
  • 收稿日期:2015-05-06 修回日期:2015-09-06 出版日期:2016-01-12 网络出版日期:2015-10-08
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2012ZX08013015)和全国农业技术推广服务中心项目(012022911108)资助。

Design of Test Location Number and Replicate Frequency in the Regional Cotton Variety Trials in China

XU Nai-Yin1,JIN Shi-Qiao2,LI Jian1   

  1. 1 Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences / Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Nanjing 210014, China; 2 National Extension and Service Center of Agricultural Technology, Beijing 100125, China
  • Received:2015-05-06 Revised:2015-09-06 Published:2016-01-12 Published online:2015-10-08
  • Supported by:

    This research was supported by the National Transgenic Project of China (2012ZX08013015) and the Project from National Extension and Service Center of Agricultural Technology (012022911108).

摘要:

农作物区域试验重复次数和试点数量设置直接影响试验的遗传力和品种选择效率。本研究以2000—2014年期间长江流域、黄河流域和西北内陆棉区国家棉花区试数据为资料,依据各棉区的试验发展现状和试验遗传力随着试点数量的变化分析重复次数和试点数量设置的合理性,提出各棉区试点数量的设置方案。结果表明: (1)我国棉花品种区域试验采用3次重复是保证试验效率的充分条件;(2)长江流域和黄河流域国家棉花区试现行的试点数量设置已经可以充分满足试验的遗传力要求,西北内陆棉区的试点数也符合遗传力达到0.75的基本要求;(3)由于棉花区域试验对品种的推荐审定和应用十分重要,试验过程中也可能会因田间管理、自然灾害或其他异常情况导致试验报废,为充分保证试验的可靠性,长江流域棉区可保持当前20个左右的试点数量,遗传力即可达到0.90的水平;黄河流域和西北内陆棉区可以分别将试点数量增加到27个和19个左右,遗传力达到0.900.85的水平。该结果为国家棉花区域试验的优化配置提供理论依据,也为其他作物区域试验布局提供参考。

关键词: 棉花(Gossypium hirsutum L.), 区域试验, 遗传力, 噪信比, 重复次数, 试点数量, 优化配置

Abstract:

The test location number and the replicate frequency in regional crop trials are important factors in determining both the trial heritability and cultivar selection efficiency. The test location number and replicate frequency for three national cotton regional trials in China were studied using experimental data during the last 15 years according to changes of trial heritability with the increase of test locations and replicates within trials in 2000–2014. The results indicated that three replicates are sufficient to achieve 0.75 of within-trial heritability. The current test locations in the Yangtze River Valley, the Yellow River Valley and the Northwest Inland regions are sufficient to achieve 0.75 of cross-trial heritability. Considering the importance of the regional trials in recommending cotton varieties and the possible trial cancellation due to poor field managements, natural disasters or other non-artificial factors, the optimum number of test locations proposed for the Yangtze River Valley should be maintained at the current level of 20 locations with H = 0.90 to ensure the enough credibility of regional trials, while that proposed for the Yellow River Valley and the Northwest Inland cotton regions should be increased to 27 and 19 locations with heritability level of 0.90 and 0.85, respectively. The conclusion will provide a theoretical guidance for the optimal configuration of national cotton regional trials and also act as a reference for the rational layout of regional trials in other crops.

Key words: Cotton (Gossypium hirsutum L.), Regional trial, Heritability, Noise-signal quotient, Frequency of replicates, Number of test locations, Optimal allocation

[1]孔繁玲, 张群远, 杨付新, 郭恒敏. 棉花品种区域试验的精确度探讨. 作物学报, 1998, 24: 601–607



Kong F L, Zhang Q Y, Yang F X, Guo H M. Studies on the precision of regional cotton variety trial . Acta Agron Sin, 1998, 24: 601–607 (in Chinese with English abstract)



[2]翟虎渠. 应用数量遗传. 北京: 中国农业出版社, 2001



Zhai H Q. Applied Quantitative Genetics. Beijing: Chinese Agricultural Press, 2001 (in Chinese)



[3]Yan W K. Crop variety trials: data management and analysis. Oxford: Wiley-Blackwell, UK, 2014



[4]Yan W K, Fregeau-Reid J, Martin R, Pageau D, Mitchell-Fetch J. How many test locations and replications are needed in crop variety trials for a target region? Euphytica, 2015, 202: 361–372



[5]DeLacy I H, Basford K E, Cooper M, Bull J K, McLaren C G. Analysis of multi-environment trials—a historical perspective. In: Cooper M, Hammer G L, eds. Plant adaptation and crop improvement, Wallingford: CAB International, 1996. pp 39–124



[6]Yan W K. GGEbiplot--A windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agron J. 2001, 93: 1111–1118



[7]严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36: 1805–1819



Yan W K. Optimal use of biplots in analysis of multi-location variety test data. Acta Agron Sin, 2010, 36: 1805–1819 (in Chinese with English abstract)



[8]张群远, 孔繁玲, 杨付新. 我国作物品种区域试验的精确研究. 中国农业大学学报, 2001, 6(1): 43–50



Zhang Q Y, Kong F L, Yang F X. Evaluation of the precision of regional crop trials in China. J China Agric Univ, 2001, 6(1):43–50 (in Chinese with English abstract)



[9]金石桥, 许乃银. 我国棉花品种区域试验面临的挑战与对策. 中国棉花, 2012, 39(1): 12–14



Jin S Q, Xu N Y. The challenges and countermeasures in national-level cotton regional trials in China. China Cotton, 2012, 39(1): 12–14 (in Chinese )



[10]许乃银, 金石桥. 棉花品种区域试验适宜试验点数量的抽样估计. 棉花学报, 2013, 25(1): 57–62



Xu N Y, Jin S Q. Sampling estimation of suitable quantity of test sites in cotton variety regional trials. Cotton Sci, 2013, 25(1): 57–62 (in Chinese with English abstract)



[11]Gouy M, Rousselle Y, Bastianelli D, Lecomte P, Bonnal L, Roques D, Efile J C, Rocher S, Daugrois J, Toubi L, Nabeneza S, Hervouet C, Telismart H, Denis M, Thong-Chane A, Glaszmann J C, Hoarau J Y, Nibouche S, Costet L. Experimental assessment of the accuracy of genomic selection in sugarcane. Theor Appl Genet, 2013, 126: 2575–2586



[12]Iwata H, Jannink J. Accuracy of genomic selection prediction in barley breeding programs: A simulation study based on the real single nucleotide polymorphism data of barley breeding lines. Crop Sci, 2011, 51: 1887–1902



[13]Kelly A M, Smith A B, Eccleston J A, Cullis, B R. The accuracy of varietal selection using factor analytic models for multi-environment plant breeding trials. Crop Sci, 2007, 47: 1063–1070



[14]Gauch H G, Zobel R W. Accuracy and selection success in yield trial analyses. Theor Appl Genet, 1989, 77: 473–481



[15]王洁, 廖琴, 胡小军, 万建民. 北方稻区国家水稻品种区域试验精确度分析. 作物学报, 2010, 36: 1870–1876



Wang J, Liao Q, Hu X J, Wan J M. Precision evaluation of rice variety regional trials in northern China. Acta Agron Sin, 2010, 36: 1870–1876 (in Chinese with English abstract)



[16]Yan W K, Holland J B. A heritability-adjusted GGE biplot for test environment evaluation. Euphytica, 2010, 171: 355–369



[17]许乃银, 李健. 棉花区试中品种多性状选择的理想试验环境鉴别. 作物学报, 2014, 40: 1936–1945



Xu N Y, Li J. Identification of ideal test environments for multiple traits selection in cotton regional trials. Acta Agron Sin, 2014, 40: 1936–1945 (in Chinese with English abstract)



[18]许乃银, 张国伟, 李健, 周治国. 基于HA-GGE双标图的长江流域棉花区域试验环境评价. 作物学报, 2012, 38: 2229–2236



Xu N Y, Zhang G W, Li J, Zhou Z G. Evaluation of cotton regional trial environments based on HA-GGE biplot in the Yangtze River valley. Acta Agron Sin, 2012, 38: 2229–2236 (in Chinese with English abstract)



[19]Yan W K, Hunt L A, Sheng Q L, Szlavnics Z. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci, 2000, 40: 597–605



[20]Yan W K. Mega-environment analysis and test-loction evaluation based on unbalanced multiyear data. Crop Sci, 2015, 55: 113–122



[21]张志芬, 付晓峰, 刘俊青, 杨海顺. 用GGE双标图分析燕麦区域试验品系产量稳定性及试点代表性. 作物学报, 2010, 36: 1377–1385



Zhang Z F, Fu X F, Liu J Q, Yang H S. Yield stability and testing-site representativeness in national regional trials for oat lines based on GGE-biplot analysis. Acta Agron Sin, 2010, 36: 1377–1385 (in Chinese with English abstract)



[22]罗俊, 张华, 邓祖湖, 许莉萍, 徐良年, 袁照年, 阙友雄. 应用GGE双标图分析甘蔗品种(系)的产量和品质性状. 作物学报, 2013, 39: 142–152



Luo J, Zhang H, Deng Z H, Xu L P, Xu L N, Yuan Z N, Que Y X. Analysis of yield and quality traits in sugarcane varieties (lines) with GGE-biplot. Acta Agron Sin, 2013, 39: 142–152 (in Chinese with English abstract)



[23]罗俊, 许莉萍, 邱军, 张华, 袁照年, 邓祖湖, 陈如凯, 阙友雄. 基于HA-GGE双标图的甘蔗试验环境评价及品种生态区划分. 作物学报, 2015, 41: 214–227



Luo J, Xu L P, Qiu J, Zhang H, Yuan Z N, Deng Z H, Chen R K, Que Y X. Evaluation of sugarcane test environments and ecological zone division in China based on HA-GGE biplot. Acta Agron Sin, 2015, 41: 214–227 (in Chinese with English abstract)



[24]Laffont J, Hanafi M, Wright K. Numerical and graphical measures to facilitate the interpretation of GGE biplots. Crop Sci, 2007, 47: 990–996



[25]Imtiaz M, Malhotra R S, Singh M, Arslan S. Identifying high yielding, stable chickpea genotypes for spring sowing: specific adaptation to locations and sowing seasons in the Mediterranean region. Crop Sci, 2013, 53: 1472–1480



[26]Mohammadi R, Amri A. Genotype × environment interaction and genetic improvement for yield and yield stability of rainfed durum wheat in Iran. Euphytica, 2013, 192: 227–249



[27]Baxevanos D, Goulas C, Rossi J, Braojos E. Separation of cotton cultivar testing sites based on representativeness and discriminating ability using GGE biplots. Agron J, 2008, 100: 1230–1236

[1] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[2] 张毅,许乃银,郭利磊,杨子光,张笑晴,杨晓妮. 我国北部冬麦区小麦区域试验重复次数和试点数量的优化设计[J]. 作物学报, 2020, 46(8): 1166-1173.
[3] 王兰芬, 武晶, 王昭礼, 陈吉宝, 余莉, 王强, 王述民. 普通菜豆种质资源不同环境下表型差异及生态适应性评价[J]. 作物学报, 2018, 44(03): 357-368.
[4] 许乃银,李健. 棉花区试中品种多性状选择的理想试验环境鉴别[J]. 作物学报, 2014, 40(11): 1936-1945.
[5] 王春平,胡希远,沈琨仑. 玉米区域试验中误差方差的异质性及其对品种评价的影响[J]. 作物学报, 2013, 39(03): 449-454.
[6] 许乃银,张国伟,李健,周治国. 基于HA-GGE双标图的长江流域棉花区域试验环境评价[J]. 作物学报, 2012, 38(12): 2229-2236.
[7] 吴存祥,李继存,沙爱华,曾海燕,孙石,杨光明,周新安,常汝镇,年海,韩天富. 国家大豆品种区域试验对照品种的生育期组归属[J]. 作物学报, 2012, 38(11): 1977-1987.
[8] 关荣霞,方宏亮,何艳琴,常汝镇,邱丽娟. 国家大豆区域试验品种(系) SSR位点纯合度分析[J]. 作物学报, 2012, 38(10): 1760-1765.
[9] 王洁, 廖琴, 胡小军, 万建民. 北方稻区国家水稻品种区域试验精确度分析[J]. 作物学报, 2010, 36(11): 1870-1876.
[10] 胡希远,尤海磊,任长宏,吴冬,李建平. 基于协方差阵结构优选的作物品种区域试验分析[J]. 作物学报, 2009, 35(11): 1981-1989.
[11] 倪小文;阎俊;陈新民;夏先春;何中虎;张勇;王德森;Morten Lillemo. 鲁麦21慢白粉病抗性基因数目和遗传力分析[J]. 作物学报, 2008, 34(08): 1317-1322.
[12] 濮绍京;金文林;白琼岩;张连平;陈立军;赵波;钟连全. 基于玉米区试的籽粒产量抽样方法研究[J]. 作物学报, 2008, 34(06): 991-998.
[13] 张勇;张立平;阎俊;张艳;王德森;刘建军;何中虎. 普通小麦面筋强度早代选择研究[J]. 作物学报, 2006, 32(11): 1663-1670.
[14] 邓华凤;何强;毛友纯;徐庆国;舒服;张武汉;杨飞;袁隆平. 长江流域杂交早稻品质性状的表现及配合力研究[J]. 作物学报, 2006, 32(05): 633-639.
[15] 余守武;尹建华;刘宜柏;胡标林;邹国兴;彭志勤. 三交水稻的育种研究Ⅲ.三交中晚稻主要农艺性状的配合力和遗传力分析[J]. 作物学报, 2005, 31(06): 784-789.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!