欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (01): 51-57.doi: 10.3724/SP.J.1006.2016.00051

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

DTA-6对大豆花荚脱落纤维素酶和GmAC基因表达的调控

崔洪秋1,2**,冯乃杰1**,孙福东1,刘涛1,李建英2,杜吉到1,韩毅强1,郑殿峰1,*   

  1. 1黑龙江八一农垦大学农学院,黑龙江大庆 163319;2黑龙江省农业科学院大庆分院,黑龙江大庆 163316
  • 收稿日期:2015-02-28 修回日期:2015-09-06 出版日期:2016-01-12 网络出版日期:2015-10-08
  • 通讯作者: 郑殿峰, E-mail: dianfeng69@gmail.com
  • 基金资助:

    本研究由国家自然科学基金项目(31171503, 31271652), 国家科技支撑计划项目(2012BAD20B04), 黑龙江省研究生创新科研项目(YJSCX2012-253HLJ), 黑龙江省杰出青年基金项目(JC201309)和黑龙江农垦总局科技攻关项目(HNK12A-06-03, HNK12A-09-02)资助。

Regulation of DTA-6 by Abscission Cellulase and GmAC Gene Expression in Flowers and Pods of Soybean

CUI Hong-Qiu1,2,**,FENG Nai-Jie1,**,SUN Fu-Dong1,LIU Tao1,LI Jian-Ying2,DU Ji-Dao1,HAN Yi-Qiang1,ZHEN Dian-Feng1,*   

  1. 1Agronomy of College / Heilongjiang Bayi Agricultural University, Daqing 163319, China; 2 Daqing branch College / Heilongjiang Academy of Agricultural Science, Daqing163316, China
  • Received:2015-02-28 Revised:2015-09-06 Published:2016-01-12 Published online:2015-10-08
  • Contact: 郑殿峰, E-mail: dianfeng69@gmail.com
  • Supported by:

    This research was supported by the National Natural Science Foundation of China (31171503, 31271652), Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (2012BAD20B04), Heilongjiang Provincial Graduate Science and Technology Innovation Projects (YJSCX2012-253HLJ), Heilongjiang Province Funds for Distinguished Young Scientists (JC201309), and Key Scientific and Technological Projects of Heilongjiang Agriculture and Reclamation Bureau (HNK12A-06-03, HNK12A-09-02).

摘要:

叶面喷施生长调节剂(PGRs)可以调控大豆花荚脱落。2012—2013年在大庆林甸县黑龙江八一农垦大学试验基地采用大田小区试验,R1期对大豆绥农28(SN28)、垦丰16 (KF16)和合丰50 (HF50)分别叶面喷施DTA-6调节剂,对调控花荚离区脱落纤维素酶(GmAC)基因相对表达量、荚脱落纤维素酶(AC)活性、花荚脱落率和产量进行了研究。结果表明:DTA-6抑制大豆花荚离区GmAC基因相对表达量,最大可达51% (±CK%);大豆荚的AC活性能够在喷药后阶段性地被降低,在不同品种上增加和降低存在差异;能够显著降低花荚脱落率(P<0.05);能够显著增加产量(P<0.05)。植物生长调节剂DTA-6是通过降低花荚离区GmAC基因相对表达量,调节AC活性,从而减少植株的花荚脱落率,以实现对产量的调控。

关键词: DTA-6, GmAC基因表达, AC, 花荚脱落率, 产量

Abstract:

It is effective to regulate abscission of soybean flowers and pods by spraying plant growth regulators (PGRs). This study was carried out to determine the effect of DTA-6 on abscission cellulose (AC) activity, abscission cellulose (GmAC) gene expressive, abscission of flowers and pods and yield in soybean. DTA-6 was foliage sprayed at R1 stage on three varieties of Suinong 28 (SN28), Kenfeng 16 (KF16), and Hefeng 50 (HF50) in 2012 and 2013. Our results demonstrated that DTA-6 treatment inhibited GmAC gene expression in abscission zone of flower and pod, with the maximum reduction of 51% among three varieties compared with control. The abscission cellulase activity was periodically decreased by DTA-6, with different decrements among soybean cultivars. DTA-6 significantly decreased (P<0.05) abscission rate of soybean flowers and pods. And significantly increased yield (P<0.05). The relative expression of abscission cellulase gene (GmAC) in abscission zone of flowers-pods was decreased and AC activity was regulated by DTA-6, resulting in reduced abscission rate of soybean flowers and pods and promoted yield.

Key words: DTA-6, GmAC gene expressive, Abscission cellulase, Flowers and pods abscission, Yield

[1]Heindl J C, Brun W A. Patterns of reproductive abscission, seed yield, and yield components in soybean. Crop Sci, 1984, 24: 542–545



[2]Rylott P D, Smith M L. Effects of applied plant growth substances on pod set in broad beans (Vicia faba var. Major). J Agric Sci Camb, 1990, 114: 41–47



[3]韩静, 王幼群, 王晓理. 植物器官脱落的机制及其研究进展. 植物学通讯, 1999, 16: 405–410



Han J, Wang Y Q, Wang X L. Progress in researches on the mechanism of abscission of plant organs. Chin Bull Bot, 1999, 16: 405–410 (in Chinese with English abstract)



[4]Heitholt J J. Role of assimilate and carbon-14 photosynthate rtitilning in soybean reproductive abortion. Crop Sci, 1986, 26: 999–1004



[5]Reese R N, Dybing C D, White C A, Page S M, Larson1 J E. Expression of vegetative storage protein (VSP-beta) in soybean raceme tissues in response to flower set. J Exp Bot, 1995, 46: 957–964



[6]Wiebold W, Ashley D, Boerma H R. Reproductive abscission levels and patterns for eleven determinate soybean cultivars. Agron J, 1981, 73: 43–46



[7]董志新, 莫庸, 陈新红, 黄文华, 阎洁. 多效唑对大豆化学调控诱导效应的研究. 石河子农学院学报, 1996, 34: 7–12



Dong Z X, Mo Y, Chen X H, Huang W H, Yan J. Study pacolobutrazol chemical regulating effect on soybean. J Shihezi Univ (Nat Sci), 1996, 34: 7–12 (in Chinese with English abstract)



[8]汪宝卿, 慈敦伟, 张礼凤, 李伟, 徐冉. 同化物供应和内源激素信号对大豆花荚发育的调控. 大豆科学, 2010, 29: 878–888



Wang B Q, Ci Z W, Zhang L F, Li W, Xu R. Research progress of assimilation supply and endogenous hormones signals regulation involved in flower and pod development of soybean. Soybean Sci, 2010, 29: 878–888 (in Chinese with English abstract)



[9]Heitholt J J, Egli D B, Lepgget J E. Characteristics of reproductive abortion in soybean. Crop Sci, 1986, 26: 589–595



[10]Kokubun M. Honda I Intra-race mevariation in pod- set probability is associated with cytokine in content in soybeans. Plant Prod Sic, 2000, 3: 354–359



[11]Yashima Y, Kaihatsu A, Nakajina T. Kokubun M. Effects of source /sink ratio and cytokine in application on pod set in soybean. Plant Prod Sci, 2005, 8: 139–144



[12]Shahri W, Tahir I. Flower senescence: some molecular aspects. Planta, 2014, 239: 277–297



[13]Xie R J, Deng L, Jing L, He S L, Ma Y T, Yi S L, Zheng Y Q, Zheng L. Recent advances in molecular events of fruit abscission. Biol Plant, 2013, 57: 201–209



[14]MacDonald M T, Lada R R, Dorais M, Pepin S. Endogenous and exogenous ethylene induces needle abscission and cellulase activity in post-harvest balsam fir(Abies balsamea L). Trees, 2011, 25: 947–952



[15]Iwai H, Terao A, Satoh S. Changes in distribution of cell wall polysaccharides in floral and fruit abscission zones during fruit development in tomato (Solanum lycopersicum). J Plant Res, 2013, 126: 427–437



[16]柴国华, 吕慧颖, 李辉亮, 陈建南, 聂晶, 张利明, 朱保葛. 热胁迫对大豆花荚离层细胞基因表达、能量供应及花荚脱落率的影响. 农业生物技术学报, 2006, 14: 574–577



Chai G H, Lü H Y, Li H L, Chen J N, Nie J, Zhang M L, Zhu B G. Effects of heat stress on HSP70 gene expression and energy supply in abscission zone of flowers-pods, and abscission rate of flowers-pods in soybean cultivars. J Agric Biot, 2006, 14: 574–577 (in Chinese with English abstract)



[17]李辉亮. 激素和热激对大豆[Glycine max(L.) Merrill]花荚脱落的影响及其分子机理研究. 湖南农业大学硕士学位论文, 湖南长沙, 2006



Li H L. Studies on the Effects of Hormone and Heat Shock on Soybean (Glycine max (L.) Merrill) Legume Abscission and Its Molecule Mechanism. MS Thesis of Hunan Agricultural University, Changsha, China, 2004 (in Chinese with English abstract)



[18]Cheng Y Q, Liu J F, Yang X D, Ma R, Liu C M, Liu Q. RNA-seq analysis reveals ethylene-mediated reproductive organ development and abscission in soybean (Glycine max (L.) Merr). Plant Mol Biol Rep, 2013, 31: 607–619



[19]冯乃杰, 郑殿峰, 刘冰, 张玉先, 杜吉到, 梁喜龙. 三种植物生长物质对大豆叶茎解剖结构的影响. 植物生理学通讯, 2008, 127: 351–354



Feng N J, Zhen D F, Liu B, Zhang Y X, Du J D, Liang X L. Effects of Plant Growth Substances on Leaf and Stem Anatomical Structure in Glycine max (Linn.) Merrill. Plant Physiol Commun, 2008, 127: 351–354 (in Chinese with English abstract)



[20]Ramesh R, Ramprasad E. Effect of plant growth regulators on morphological, physiological and biochemical parameters of soybean (Glycine max L. Merrill). Sci Tech, 2015, 61–71



[21]柴国华. 激素、逆境对大豆脱落纤维素酶基因表达的调控及其对花荚脱落的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2006



Chai G H. Regulation of Abscission Cellulose Gene Expression and Effect of Flowers and Pods Abscission in Soybean by Hormones or Unfavorable Circumstances. MS Thesis of Northwest A&F Univ, Yangling, China, 2004 (in Chinese with English abstract)



[22]宋莉萍, 刘金辉, 郑殿峰, 冯乃杰. 不同时期PGRs对大豆花荚脱落率及纤维素酶活性的影响. 中国油料作物学报, 2011, 33: 253–258



Song L P, Liu J H, Zheng D F, Feng N J. Regulation of plant growth regulators on abscission rate and cellulase activity of soybean flowers and pods. Chin J Oil Crop Sci, 2011, 33: 253–258 (in Chinese with English abstract)



[23]Ghose T. Measurement of Cellulase Activities. Pure Appl Chem, 1987, 58: 257–268



[24]郝建军, 刘延吉. 植物生理学实验技术. 沈阳: 辽宁科学技术出版社, 2001. pp 9–13



Hao J J, Liu Y J. Plant physiology experimental techniques. Shenyang: Liaoning Science and Technology Publishing House, 2001, pp 9–13



[25]林祥木. 产纤维素酶菌株的诱变选育及其产酶条件的研究. 福建农林大学硕士学位论文, 福建福州, 2004



Lin X M. Studies on Isolation of Strains Producing Cellulase and Conditions of Enzyme Production. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, China, 2004 (in Chinese with English abstract)



[26]Lasbbrook C C, Giovannoni J J, Hall B D, Robert L F, Alan B B. Transgenic analysis of tomato endo-1,4-beta-glucanase gene function. Role of cell in floral abscission. Plant J, 1998, 13: 303–310



[27]Brummell D A, Hall B D, Bennett A B. Antisense suppression of tomato endo-l.4-beta-glucanase cell mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening. Plant Mol Biol, 1999, 40: 615–622



[28]Leopold A C. The mechanism of foliar abscission. Soc Exp Biol Symp, 1967, 21: 507–516



[29]Abeles F B. Abscission regulation of senescence protein synthesis and enzymesretion by ethylene. Hort Sci, 1971, 6: 371–376



[30]Gonzalez-Bosch C, del Campillo E, Bennett A B. Immunodetection and characterization of tomato endo-1,4-glucanase cell protein in flower abscission zones. Plant Physiol, 1997, 114: 1541–1546



[31]Kemmerer E C, Tucker M L. Comparative study of cellulases associated with adventitious root initiation, apical buds and leaf, flower and pod abscission zones in soybean. Antphysiol, 1994, 104: 557–562



[32]Tucker M L, Seiton R, del Campillo E. Bean abscission cellulase: regulation of gene expression by ethylene and auzin characterization of a cDNA. Plant Pbysiol, 1988, 88: 1257–1262



[33]宋莉萍. 不同时期叶施PGRs对大豆花荚的调控效应. 黑龙江八一农垦大学博士学位论文, 黑龙江大庆, 2011



Song L P. Regulation on Soybean Flower and Pod by Foliage Applying Plant Growth Regulators in Different Development Stages. PhD Dissertation of Heilongjiang Bayi Agricultural University, Daqing, China, 2011 (in Chinese with English abstract)



[34]Bonghi C, Rascio N, Ramina A, Casadoro G. Cellulase and polygalacturonase involvement in the abscission of leaf and Fruit explants of peach. Plant Mol Biol, 1992, 20: 839–848



[35]Clements J C, Atkins C A. Characterization of a non-abscission mutant in Lupinus ungustifolius L.: physiological aspects. Ann Bot, 2001, 88: 629–635



[36]Abeles F B, Rubinstein B. Regulation of ethylene evolution and leaf abscission by auxin. Plant Physiol, 1964, 39: 963–969



[37]Oberholster S D. Pedicel abscission of soybean: cytological and ultrastructural changes induced by auxin and ethephon. Can J Bot, 1991, 69: 2177–2186



[38]Moree D J. Cell wall dissolution and enzyme. sretion during leaf abscission. Plant Physiol, 1969, 43: 1545–1559



[39]Berger R K, Reid P D. Role of polygalacturonase in bean leaf abscission. Plant Physiol, 1979, 63: 1133–1137



[40]郑殿峰, 赵黎明, 于洋, 冯乃杰, 赵玖香. 植物生长调节剂对大豆花荚脱落及产量的影响. 大豆科学, 2008, 27: 783–786



Zheng D F, Zhao L M, Yu Y, Feng N J, Zhao J X. Effects of plant growth regulators (PGRs) on the abscission of flower and pod of soybean. Soybean Sci, 2008, 127: 783–786 (in Chinese with English abstract)

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!