欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (07): 1094-1099.doi: 10.3724/SP.J.1006.2016.01094

• 研究简报 • 上一篇    

花生AhDGAT2a基因启动子的克隆和功能验证

郑玲1,2,史灵敏1,3,田海莹1,2,单雷1,2,边斐1,郭峰1,宣宁1,万书波1,2,*,彭振英1,2,3,*   

  1. 1山东省农业科学院生物技术研究中心 / 山东省作物遗传改良与生态生理重点实验室,山东济南 250100; 2山东大学生命科学学院,山东济南 250100;3新疆农业大学农学院,新疆乌鲁木齐 830000
  • 收稿日期:2016-01-11 修回日期:2016-05-09 出版日期:2016-07-12 网络出版日期:2016-05-11
  • 通讯作者: 万书波, E-mail: wansb@saas.ac.cn, Tel: 0531-83178335; 彭振英, E-mail: pengzhenying2005@126.com
  • 基金资助:

    本研究由山东省自然科学基金项目(ZR2013CM036)和山东省良种工程项目(2014-2017)的资助。

Cloning and Functional Analysis of Peanut AhDGAT2a Promoter?

ZHENG Ling1,2,SHI Ling-Min1,3,TIAN Hai-Ying1,2,SHAN Lei1,2,BIAN Fei1,GUO Feng1, XUAN Ning1,WAN Shuo-Bo1,2,*,PENG Zhen-Ying1,2,3,*   

  1. 1 Biotechnology Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; 2 College of Life Science, Shandong University, Jinan 250100, China; 3 College of Agronomy, Xinjiang Agricultural University, Urumqi 830000, China
  • Received:2016-01-11 Revised:2016-05-09 Published:2016-07-12 Published online:2016-05-11
  • Contact: 万书波, E-mail: wansb@saas.ac.cn, Tel: 0531-83178335; 彭振英, E-mail: pengzhenying2005@126.com
  • Supported by:

    This study was supported by Natural Science Foundation of Shandong (ZR2013CM036) and Shandong Province Germplasm Innovation and Utilization Project (2014-2017).

摘要:

二酰甘油酰基转移酶(DGAT)是三酰甘油(TAG)合成途径的限速酶,对脂肪酸合成的调节具有关键作用。为了研究AhDGAT2a的表达调控,利用GenomeWalking方法从鲁花14基因组中克隆了AhDGAT2a上游5¢侧翼调控区1200 bp序列,即AhDGAT2a启动子(pAhDGAT2a)序列,并利用生物信息学软件分析其包含的调控元件,发现其含有多个TATA-box和CAAT-box、光调控元件、胁迫防御相关元件和激素响应元件。用pAhDGAT2a构建pAhDGAT2a:GUS植物表达载体并转化烟草品种SR1。利用组织染色法鉴定转基因烟草的GUS表达模式,发现在转基因烟草的各个器官均有GUS酶活,而在柱头、花药和幼嫩种子中表达量较高,说明pAhDGAT2a具有一定的组成型启动子活性。

关键词: 花生, DGAT2a基因, 启动子, 功能验证

Abstract:

Diacylglycerol acyltransferase (DGAT) is a rate-limiting enzyme in triacylglycerol (TAG) biosynthesis pathway. In this study, GenomeWalking method was used for cloning the promoter sequence of AhDGAT2a gene from Luhua 14, and finally a 1200 bp fragment flanking 5′-upstream of AhDGAT2a was obtained and named as pAhDGAT2a. The crucial regulatory elements in pAhDGAT2a were further analyzed with software PlantCARE. There were many TATA-box, CAAT-box, light regulation, stress and defense response and hormone response elements. To assess the activity of pAhDGAT2a, we constructed pAhDGAT2a:GUS cassettes and introduced it into the tobacco SR1 genome by Agrobacterium-mediated transformation. Expression pattern was monitored by histochemical staining. Results showed that GUS activity driven by the pAhDGAT2a was detected in almost all vegetative and reproductive tissues, with a higher expression level in stigma, anther and young seeds than in the other organs, indicating thatpAhDGAT2a has a constitutive promoter activity.

Key words: Arachis hypogaea L., DGAT2a gene, Promoter, Function analysis

[1] Broun P, Gettner S, Somerville C. Genetic engineering of plant lipids. Annu Rev Nutr, 1999, 19: 197–216
[2] Jung S, Swift D, Sengoku E, Patel M, Teulé F, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut [Arachis hypogaea L.]: I. Isolation and characterization of two genes encoding microsomal oleyl-PC desaturases. Mol Gen Genet, 2000, 263: 796–805
[3] Yu Y H, Ginsberg H N. The role of acyl-CoA: diacylglycerol acyilransferase (DGAT) in energy metabolism. Ann Med, 2004, 36: 252–261
[4] Zou J, Wei Y D, Jako C, Kumar A, Selvaraj G, Taylor D C. The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J, 1999, 19: 645–653
[5] Feussner I, Kuhn H, Wasternack C. Lipoxygenase-dependent degradation of storage lipids. Trends Plant Sci, 2001, 6: 268–273
[6] Lu C F, Hills M J. Arabidopsis mutants deficient in diacylglycerol acyltransferase display increased sensitivity to abscisic acid, sugars and osmotic stress during germination and seedling development. Plant Physiol, 2002, 129: 1352–1358
[7] He X, Chen G Q, Lin J T, Mckeon T A. Diacylglycerol acyltransferase activity and triacylglycerol synthesis in germinating castor seed cotyledons. Lipids, 2006, 41: 281–285
[8] Weiss S B, Kennedy E P, Kiyasu J Y. The enzymatic synthesis of triglycerides. J Biol Chem, 1960, 235: 40–44
[9] Saha S, Enugutti B, Rajakumari S, Rajadekharan R. Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant Physiol, 2006, 141: 1533–1543
[10] Lehner R, Kuksis A. Biosynthesis of triacylglycerols. Prog Lipid Res, 1996, 35: 169–201
[11] Hofmann K. A superfamily of membrane-bound O-acyltransferases with implications for WNT signaling. Trends Biochem Sci, 2000, 25: 111–112
[12] Cases S, Smith S J, Zheng Y W. Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA, 1998, 95: 13018–13023
[13] Bouvier P, Benveniste P, Oelkers P, Sturley S L, Schaller H. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase. Eur J Biochem, 2000, 267: 85–96
[14] Sandager L, Gustsvsson M H, Stehl U, Dahlqvist A, Wiberg E, Banas A, Lenman M, Ronne H, Stymne S. Storage lipid synthesis is non-essential in yeast. J Biol Chem, 2002, 277: 6478–6482
[15] Stone S, Levin M, Farese R V. Membrane topology and identification of key functional amino acid residues of murine acyl-CoA:diacylglycerol acyltransferase-2. J Biol Chem, 2006, 281: 40273–40282
[16] Shockey J, Gidda S D, Chapital, Kuan J, Dhanoa P, Bland J, Rothstein S, Mullen R, Dyer J. Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell, 2006, 18: 2294–2313
[17] Hobbs D H, Lu C, Hills M J. Cloning of a cDNA encoding diacylglycerol acyltransferase from Arabidopsis thaliana and its functional expression. FEBS Lett, 1999, 452: 145–149
[18] Lu C L, Noyer S B, Hobbs D H, Kang J, Wen Y, Kratchus D, Hills M J. Expression pattern of diacyl-glycerol acyltransferase-1, an enzyme involved in triacylglycerol biosynthesis, in Arabidopsis thaliana. Plant Mol Biol, 2003, 52: 31–41
[19] Jako C, Kumar A, Wei Y D, Zou J, Barton D L, Giblin E M, Covello P S, Taylor D C. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhance seed oil content and seed weight. Plant Physiol, 2001, 126: 861–874
[20] Zheng P, Allen W, Roesler K, Williams M, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G Y, Tarczynski, M C, Shen B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet, 2008, 40: 367–372
[21] Lardizabal K, Effertz R, Levering C, Jennifer M, Pedroso M C, Tom J, Eric A, Ken G, Kristen B. Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean. Plant Physiol, 2008, 148: 89–96
[22] Burgal J, Shockey J, Lu C, Dyer J, Larson T, Graham I, Browse J. Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnol J, 2008, 46: 1502–1511
[23] 万书波主编. 花生品质学. 北京: 中国农业科学技术出版社, 2005. pp 2–10
Wan S B. Peanut Quality. Beijing: China Agricultural Science and Technology Publishers, 2005. pp 2–5 (in Chinese)
[24] 廖伯寿. 中国花生油脂产业竞争力浅析. 花生学报, 2003, 32: 11–15
Liao B S. Analysis the competitiveness of Chinese peanut oil industry. J Peanut Sci, 2003, 32: 11–15 (in Chinese)
[25] 王龙龙. 花生二酰甘油酰基转移酶(DGAT)基因的克隆与分析. 山东师范大学, 山东济南, 2010
Wang L L. Cloning and Characterization of Diacylglycerol Acyltransferase (DGAT) Gene in Peanut (Arachis hypogaea L.). MS Thesis of Shandong Normal University, Jinan, China, 2010 (in Chinese with English abstract)
[26] Peng Z Y, Li L, Yang L Q, Zhang B, Chen G, Bi Y P. Overexpression of peanut diacylglycerol acyltransferase2 in Escherichia coli. PLoS One, 2013, 8: e61363
[27] Chi X, Hu R, Zhang X, Chen M, Chen N, Pan L, Wang T, Wang M, Yang Z, Wang Q F, Yu S L. Cloning and Functional Analysis of Three Diacylglycerol Acyltransferase Genes from Peanut (Arachis hypogaea L.). PLoS One, 2014, 9: e105834
[28] Shockey J M, Gidda S K, Chapital D C, Kuan J C, Dhanoa P K, Bland J M, Rothstein S J, Mullen R T, Dyera J M. Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell, 2006, 18: 2294–2313
[29] Perry H J, Harwood J L. Changes in the lipid content of developing seeds of Brassica napus. Phytochemistry, 1993, 32: 1411–1415
[30] Lock Y Y, Snyder C L, Zhu W, Siloto R M, Weselake R J, Shah S. Antisense suppression of type 1 diacylglycerol acyltransferase adversely affects plant development in Brassica napus. Physiol Plant, 2009, 137: 67–74
[31] Donald R G, Cashmore A R. Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1 Apromoter. EMBO J, 1990, 9: 1717–1726
[32] Puente P, Wei N, Deng X W. Combinatorial interplay of promoter elements constitutes the minimal determinants for light and developmental control of gene expression in Arabidopsis. EMBO J, 1996, 15: 3732–3743
[33] Lam E, Chua N H. Gt1 binding site confers light-responsive expression in transgenic tobacco. Science, 1990, 248: 471–474
[34] Chen P W, Lu C A, Yu T S, Teng T H, Wang C S, Yu S M. Rice alpha-amylase transcriptional enhancers direct multiple mode regulation of promoters in transgenic rice. J Biol Chem, 2002, 277: 13641–13649
[35] 杨予涛. 一个光合组织特异表达启动子的克隆、功能分析及其转录因子的鉴定. 山东农业大学博士学位论文, 山东泰安, 2005
Yang Y T. Isolation and Characterization of A Strong Specific Promoter in Photosynthetic Tissues and Identification of a bZIP Transcription Factor. PhD dissertation of Shandong Agricultural University, Tai’an, China, 2005 (in Chinese with English abstract)
[36] Hoffmann M, Binder S. Functional importance of nucleotide identities within the peat p9 promoter sequence. Mol Biol, 2002, 320: 943–950
[37] Yadav V, Kundu S, Chattopadhyay D, Negi P, Wei N, Deng X W, Chattopadhyay S. Light regulated modulation of Z-box containing promoters by photoreceptors and downstream regulatory components, COP1 and HY5, in Arabidopsis. Plant J, 2002, 31: 741–753
[38] Tao Y B, Luo L, He L L, Ni J, Zeng F X. A promoter analysis of MOTHER OF FT AND TFL1 (JcMFT1), a seed-preferential gene from the biofuel plant Jatropha curcas. Plant Res, 2014, 127: 513–524
[39] Xu W, Yu Y, Ding J, Hua Z, Wang L. Characterization of a novel stilbene synthase promoter involved in pathogen- and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta, 2010, 231: 475–487
[40] Wang H, Zhang J, Gai J, Chen S. Cloning and comparative analysis of the gene encoding diacylglycerol acyltransferase from wild type and cultivated soybean. Theor Appl Genet, 2006, 112: 1086–1097
[41] Xu J, Francis T, Mietkiewska E, Giblin E M, Barton D L, Zhang Y, Zhang M, Taylor D C. Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferasel (DGATl) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content. Plant Biotechnol J, 2008, 6: 799–818
[42] Li R Z, Yu K S, Hildebrand D F. DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids, 2010, 45: 145–157

[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[5] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[6] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[7] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[8] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[9] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[10] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[11] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[12] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[13] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[14] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[15] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!