欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (07): 945-956.doi: 10.3724/SP.J.1006.2016.00945

• 综述 •    下一篇

植物关联分析方法的研究进展

冯建英1,温阳俊1,张瑾1,章元明2,*   

  1. 1 南京农业大学作物遗传与种质创新国家重点实验室, 江苏南京210095; 2华中农业大学植物科技学院, 湖北武汉430070
  • 收稿日期:2015-07-08 修回日期:2016-05-09 出版日期:2016-07-12 网络出版日期:2016-05-11
  • 通讯作者: 章元明, E-mail: soyzhang@mail.hzau.edu.cn; Tel: 13505161564
  • 基金资助:

    本研究由国家自然科学基金项目(31301004)和中央高校基本科研业务费项目(KJQN201422)资助。

Advances on Methodologies for Genome-wide Association Studies in Plants

FENG Jian-Ying1,WEN Yang-Jun1,ZHANG Jin1,ZHANG Yuan-Ming2,*   

  1. 1 State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; 2 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China?
  • Received:2015-07-08 Revised:2016-05-09 Published:2016-07-12 Published online:2016-05-11
  • Contact: 章元明, E-mail: soyzhang@mail.hzau.edu.cn; Tel: 13505161564
  • Supported by:

    This work was supported by National Natural Science Foundation of China (31301004) and Fundamental Research Funds for the Central Universities (KJQN201422).

摘要:

关联分析在人类和动植物遗传研究中的应用日益广泛,新方法及其软件包不断涌现。为对其更好选择和应用,本文综述了关联分析的主要方法及其软件包。首先,介绍了群体结构对关联分析的影响;其次,重点介绍了单位点关联分析、多位点关联分析、上位性和多性状关联分析方法及其软件包;最后,展望了关联分析的发展动向。应当指出,基于群体结构和多基因整体背景控制的全基因组单标记快速扫描算法在目前的实际资料分析中应用较广泛,与其结果互补的是假阳性率较高的非参数方法。但是,今后的方法应当是以多位点模型、环境互作、上位性检验和多个相关性状联合分析为主。这为今后的理论与应用研究提供了有益信息。

关键词: 全基因组关联分析, 上位性, 混合线性模型, 多位点模型

Abstract:

Genome-wide association studies (GWAS) have been widely used in human, animal and plant genetics, and many new approaches and their softwares have been developed in recent years. To make a better use of the GWAS methods in applied research, in this study we summarized the advances on methodologies and softwares for GWAS. First, LD score regression was introduced to investigate the effect of population structure on GWAS. Then, the main approaches and their softwares for GWAS in plants were reviewed, including a single-locus model, a multi-locus model, epistasis, and multiple correlated traits. Finally, we prospected the future developments in GWAS. It should be noted that, in real data analysis at present, the methodologies for genome-wide single-marker scan under polygenic background and population structure controls are widely used, and the corresponding results are complementary to those derived from non-parameter approaches with high false discovery rate. However, the future approaches for GWAS should be based on the multi-locus genetic model, QTN-by-environment interaction, epistatic detection and multivariate analysis. Our purpose was to provide beneficial information in theoretical and applied researches.

Key words: Genome-wide association study, Epistasis, mixed linear model, multi-locus model

[1]Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science, 1996, 273: 1516–1517
[2]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M, Bender D, Maller J, Sklar P, De Bakker P, Daly M, Sham P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007, 81: 559–575
[3]Wan X, Yang C, Yang Q, Xue H, Fan X D, Tang N L S, Yu W C. BOOST: a fast approach to detecting gene-gene interactions in genome-wide case-control studies. Am J Hum Genet, 2010, 87: 325–340
[4]Takeuchi F, Serizawa M, Yamamoto K, Fujisawa T, Nakashima E, Ohnaka K, Ikegami H, Sugiyama T, Katsuya T, Miyagishi M, Nakashima N, Nawata H, Nakamura J, Kono S, Takayanagi R, Kato N. Confirmation of multiple risk loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes, 2009, 3: 1690–1699
[5]Michailidou K, Beesley J, Lindstrom S, Canisius S, Dennis J, Lush M J, Maranian M J, Bolla M K, Wang Q, Shah M, Perkins B J, Czene K, Eriksson M, Darabi H, Brand J S, Bojesen S E, Nordestgaard B G, Flyger H, Nielsen S F, Rahman N, Turnbull C; BOCS, Fletcher O, Peto J, Gibson L, dos-Santos-Silva I, Chang-Claude J, Flesch-Janys D, Rudolph A, Eilber U, Behrens S, Nevanlinna H, Muranen T A, Aittomäki K, Blomqvist C, Khan S, Aaltonen K, Ahsan H, Kibriya M G, Whittemore A S, John E M, Malone K E, Gammon M D, Santella R M, Ursin G, Makalic E, Schmidt D F, Casey G, Hunter D J, Gapstur S M, Gaudet M M, Diver W R, Haiman C A, Schumacher F, Henderson B E, Le Marchand L, Berg C D, Chanock S J, Figueroa J, Hoover R N, Lambrechts D, Neven P, Wildiers H, van Limbergen E, Schmidt M K, Broeks A, Verhoef S, Cornelissen S, Couch F J, Olson J E, Hallberg E, Vachon C, Waisfisz Q, Meijers-Heijboer H, Adank M A, van der Luijt R B, Li J, Liu J, Humphreys K, Kang D, Choi J Y, Park S K, Yoo K Y, Matsuo K, Ito H, Iwata H, Tajima K, Guénel P, Truong T, Mulot C, Sanchez M, Burwinkel B, Marme F, Surowy H, Sohn C, Wu A H, Tseng C C, Van Den Berg D, Stram D O, González-Neira A, Benitez J, Zamora M P, Perez J I, Shu X O, Lu W, Gao Y T, Cai H, Cox A, Cross S S, Reed M W, Andrulis I L, Knight J A, Glendon G, Mulligan A M, Sawyer E J, Tomlinson I, Kerin M J, Miller N; kConFab Investigators; AOCS Group, Lindblom A, Margolin S, Teo S H, Yip C H, Taib N A, Tan G H, Hooning M J, Hollestelle A, Martens J W, Collée J M, Blot W, Signorello L B, Cai Q, Hopper J L, Southey M C, Tsimiklis H, Apicella C, Shen C Y, Hsiung C N, Wu P E, Hou M F, Kristensen V N, Nord S, Alnaes G I; NBCS, Giles G G, Milne R L, McLean C, Canzian F, Trichopoulos D, Peeters P, Lund E, Sund M, Khaw K T, Gunter M J, Palli D, Mortensen L M, Dossus L, Huerta J M, Meindl A, Schmutzler R K, Sutter C, Yang R, Muir K, Lophatananon A, Stewart-Brown S, Siriwanarangsan P, Hartman M, Miao H, Chia K S, Chan C W, Fasching P A, Hein A, Beckmann M W, Haeberle L, Brenner H, Dieffenbach A K, Arndt V, Stegmaier C, Ashworth A, Orr N, Schoemaker M J, Swerdlow A J, Brinton L, Garcia-Closas M, Zheng W, Halverson S L, Shrubsole M, Long J, Goldberg M S, Labrèche F, Dumont M, Winqvist R, Pylkäs K, Jukkola-Vuorinen A, Grip M, Brauch H, Hamann U, Brüning T; GENICA Network, Radice P, Peterlongo P, Manoukian S, Bernard L, Bogdanova N V, Dörk T, Mannermaa A, Kataja V, Kosma V M, Hartikainen J M, Devilee P, Tollenaar R A, Seynaeve C, Van Asperen C J, Jakubowska A, Lubinski J, Jaworska K, Huzarski T, Sangrajrang S, Gaborieau V, Brennan P, McKay J, Slager S, Toland A E, Ambrosone C B, Yannoukakos D, Kabisch M, Torres D, Neuhausen S L, Anton-Culver H, Luccarini C, Baynes C, Ahmed S, Healey C S, Tessier D C, Vincent D, Bacot F, Pita G, Alonso M R, Álvarez N, Herrero D, Simard J, Pharoah P P, Kraft P, Dunning A M, Chenevix-Trench G, Hall P, Easton D F. Genome-wide association analysis of more than 120 000 individuals identifies 15 new susceptibility loci for breast cancer. Nat Genet, 2015, 47: 373–380
[6]Scuteri A, Sanna S, Chen W M, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orrú M, Usala G, Dei M, Lai S, Maschio A, Busonero F, Mulas A, Ehret G B, Fink A A, Weder A B, Cooper R S, Galan P, Chakravarti A, Schlessinger D, Cao A, Lakatta E, Abecasis G R. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet, 2007, 3(7): e115
[7]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286–289
[8]Hansen M, Kraft T, Ganestam S, Säll T, Nilsson N O. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers. Genet Res, 2001, 77: 61–66
[9]Zhang Y M, Mao Y C, Xie C Q, Smith H, Luo L, Xu S. Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.). Genetics, 2005, 169: 2267–2275
[10]Yu J, Pressoir G, Briggs W H, Vroh Bi I, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203–208
[11]Kang H M, Zaitlen N A, Wade C M, Kirby A, Heckerman D, Daly M J, Eskin E. Efficient control of population structure in model organism association mapping. Genetics, 2008, 178: 1709–1723
[12]Zhang Z, Ersoz E, Lai C Q, Todhunter R J, Tiwari H K, Gore M A, Bradbury P J, Yu J M, Arnett D K, Ordovas J M, Buckler E S. Mixed linear model approach adapted for genome-wide association studies. Nat Genet, 2010, 42: 355–360
[13]Atwell S, Huang Y S, Vilhjálmsson B J, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone A M, Hu T T, Jiang R, Muliyati N W, Zhang X, Amer M A, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker J R, Faure N, Kniskern J M, Jones J D, Michael T, Nemri A, Roux F, Salt D E, Tang C, Todesco M, Traw M B, Weigel D, Marjoram P, Borevitz J O, Bergelson J, Nordborg M. Genome-wide association study of 107 phenotypes in Arabidopsis Thaliana inbred lines. J Am Soc Mass Spectrom, 2010, 465: 627–631
[14]Wang S B, Feng J Y, Ren W L, Huang B, Zhou L, Wen Y J, Zhang J, Jim M D, Xu S Z, Zhang Y M. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep, 2016, 6: 19444
[15]Liu X L, Huang M, Fan B, Buckler E S, Zhang Z W. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet, 2016, 12(2): e1005767
[16]Zhang F T, Zhu Z H, Tong X R, Zhu Z X, Qi T, Zhu J. Mixed linear model approaches of association mapping for complex traits based on omics variants. Sci Rep, 2015, 5: 10298
[17]Devlin B, Roeder K. Genomic control for association studies. Biometrics, 1999, 55: 997–1004
[18]Song M, Hao W, Storey J D. Testing for genetic associations in arbitrarily structured populations. Nat Genet, 2015, 47: 550–556
[19]Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945–959
[20]Wilson L M, Whitt S R, Ibáez A M, Rocheford T R, Goodman M M, Buckler E S. Dissection of maize kernel composition and starch production by candidate gene associations. Plant Cell, 2004, 16: 2719–2733
[21]Sabatti C, Service S K, Hartikainen A L, Pouta A, Ripatti S, Brodsky J, Jones C G, Zaitlen N A, Varilo T, Kaakinen M, Sovio U, Ruokonen A, Laitinen J, Jakkula E, Coin L, Hoggart C, Collins A, Turunen H, Gabriel S, Elliot P, McCarthy M I, Daly M J, Järvelin M R, Freimer N B, Peltonen L. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet, 2009, 41: 35–46
[22]Price A L, Pattersom N J, Plenge R M, Weinblatt M E, Shadick N A, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet, 2006, 38: 904–909
[23]Lee A B, Luca D, Klei L, Devlin B, Roeder K. Discovering genetic ancestry using spectral graph theory. Genet Epidemiol, 2010, 34: 51–59
[24]Bulik-Sullivan B K, Loh P R, Finucane H K, Ripke S, Yang J; Schizophrenia Working Group of the Psychiatric Genomics Consortium, Patterson N, Daly M J, Price A L, Neale B M. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet, 2015, 47: 291–295
[25]Bu S H , Zhao X W, Yi C, Wen J, Tu J X, Zhang Y M. Interacted QTL mapping in partial NCII design provides evidences for breeding by design. PLoS One, 2015, 10(3): e0121034
[26] Li M, Liu X L, Bradbury P, Yu J M, Zhang Y M, Todhunter R J, Buckler E S, Zhang Z W. Enrichment of statistical power for genome-wide association studies. BMC Biol, 2014, 12: 73–82
[27]Kang H M, Sul J H, Service S K, Zaitlen N A, Kong S Y, Freimer N B, Sabatti C, Eskin E. Variance component model to account for sample structure in genome-wide association studies. Nat Genet, 2010, 42: 348–354
[28]Svishcheva G R, Axenovich T I, Belonogova N M, van Duijn C M, Aulchenko Y S. Rapid variance components-based method for whole-genome association analysis. Nat Genet, 2012, 44: 1166–1170
[29]Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet, 2012, 44: 821–826
[30]Lippert C, Listqarten J, Liu Y, Kadie C M, Davidson R I, Heckerman D. Fast linear mixed models for genome-wide association studies. Nat Methods, 2011, 8: 833–835
[31]Listgarten J, Lippert C, Kadie C M, Davidson R I, Eskin E, Heckerman D. Improved linear mixed models for genome-wide association studies. Nat Methods, 2012, 9: 525–526
[32]Loh P R, Tucker G, Bulik-Sullivan B K, Vilhjálmsson B J, Finucane H K, Salem R M, Chasman D I, Ridker P M, Neale B M, Berger B, Patterson N, Price A L. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet, 2015, 47: 284–290
[33]Wang Q, Tian F, Pan Y, Buckler E S, Zhang Z. A SUPER powerful method for genome wide association study. PLoS One, 2014, 9: e107684
[34]Zhao K, Tung C W, Eizenga G C, Wright M H, Ali M L, Price A H, Norton G J, Islam M R, Reynolds A, Mezey J, McClung A M, Bustamante C D, McCouch S R. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun, 2011, 2: 467–476
[35]Wen Z X, Tan R J, Yuan J Z, Bales C, Du W Y, Zhang S C, Chilvers M I, Schmidt C, Song Q J, Cregan P B, Wang D C. Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genomics, 2014, 15: 809–819
[36]Yang N, Lu Y L, Yang X H, Huang J, Zhou Y, Ali F, Wen W W, Liu J, Li J S, Yan J B. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet, 2014, 10(9): e1004573
[37]McCullagh P, Nelder J A. Generalized Linear Models, 2nd edn. London: Chapman and Hall, 1989
[38]Yi N, Liu N J, Zhi D G, Li J. Hierarchical generalized linear models for multiple groups of rare and common variants: jointly estimating group and individual-variant effects. PLoS Genet, 2011, 7(12): e1002382
[39]Feng J Y, Zhang J, Zhang W J, Wang S B, Han S F, Zhang Y M. An efficient hierarchical generalized linear mixed model for mapping QTL of ordinal traits in crop cultivars. PLoS One, 2013, 8(4): e59541
[40]Wang L, Jia P, Wolfinger R D, Chen X, Grayson B L, Aune T M, Zhao Z. An efficient hierarchical generalized linear mixed model for pathway analysis of genome-wide association studies. Bioinformatics, 2011, 27(5): 686–692
[41]Iwata H, Uga Y, Yoshioka Y, Ebana K, Hayashi T. Bayesian association mapping of multiple quantitative trait loci and its application to the analysis of genetic variation among (Oryza sativa L.) germplasms. Theor Appl Genet, 2007, 114: 1437–1449
[42]Iwata H, Ebana K, Fukuoka S, Jannink J L, Hayashi T. Bayesian multilocus association mapping on ordinal and censored traits and its application to the analysis of genetic variation among (Oryza sativa L.) germplasms. Theor Appl Genet, 2009, 118: 865–880
[43]Zhang Y M, Xu S. A penalized maximum likelihood method for estimating epistatic effects of QTL. Heredity, 2005, 95: 96–104
[44]Hoggart C J, Whittaker J C, De Iorio M, Balding D J. Simultaneous analysis of all SNPs in genome-wide and resequencing association studies. PLoS Genet, 2008, 4: e1000130
[45]Segura V, Vilhjálmsson B J, Platt A, Korte A, Seren Ü, Long Q, Nordborg M. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet, 2012, 44: 825–830
[46]Yang J, Lee S H, Goddard M E, Visscher P M. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet, 2011, 88: 76–82
[47]Goddard M E, Wray N R, Verbyla K, Visscher P M. Estimating effects and making predictions from genome- wide marker data. Stat Sci, 2009, 24: 517–529
[48]Zhou X, Carbonetto P, Stephens M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet, 2013, 9(2): e1003264
[49]Moser G, Lee S H, Hayes B J, Goddard M E, Wray N R, Visscher P M. Simultaneous discovery, estimation and prediction analysis of complex traits using a Bayesian mixture model. PLoS Genet, 2015, 11(4): e1004969
[50]Zhang Y, Liu J S. Bayesian inference of epistatic interactions in case-control studies. Nat Genet, 2007, 39: 1167–1173
[51]Tang W W, Wu X B, Jiang R. Epistatic module detection for case-control studies: a Bayesian model with a Gibbs sampling strategy. PLoS Genet, 2009, 5(5): e1000464
[52]Cho S, Kim H, Oh S, Kim K, Park T. Elastic-net regularization approaches for genome-wide association studies of rheumatoid arthritis. BMC Proc, 2009, 3(suppl 7): S25
[53]Han B, Park M, Chen X W. A Markov blanket-based method for detecting causal SNPs in GWAS. BMC Bioinformatics, 2010, 11(suppl 3): S5
[54]Han B, Chen X W, Talebizadeh Z. FEPI-MB: identifying SNPs-disease association using a Markov blanket-based approach. BMC Bioinformatics, 2011, 12(Suppl 12): S3
[55]Li J, Dan J, Li C L, Wu R L. A model-free approach for detecting interactions in genetic association studies. Brief Bioinform, 2014, 15: 1057–1068
[56]Wang D, Eskridge K M, Crossa J. Identifying QTLs and epistasis in structured plant populations using adaptive mixed LASSO. J Agric Biol Environ Stat, 2011, 16: 170–184
[57]Lü H Y, Liu X F, Wei S P, Zhang Y M. Epistatic association mapping in homozygous crop cultivars. PLoS One, 2011, 6(3): e17773
[58]Wen J, Zhao X W, Wu G R, Xiang D, Liu Q, Bu S H, Yi C, Song Q J, Dunwell J M, Tu J X, Zhang T Z, Zhang Y M. Genetic dissection of heterosis using epistatic association mapping in a partial NCII mating design. Sci Rep, 2015, 5: 18376
[59]Aschard H, Vilhjálmsson B J, Greliche N, Morange P E, Trégouët D A, Kraft P. Maximizing the power of principal-component analysis of correlated phenotypes in genome-wide association studies. Am J Hum Genet, 2014, 94: 662–676
[60]Ferreira M A, Purcell S M. A multivariate test of association. Bioinformatics, 2009, 25: 132–133
[61]Bottolo L, Chadeau-Hyam M, Hastie D I, Zeller T, Liquet B, Newcombe P, Yengo L, Wild P S, Schillert A, Ziegler A, Nielsen S F, Butterworth A S, Ho W K, Castagné R, Munzel T, Tregouet D, Falchi M, Cambien F, Nordestgaard B G, Fumeron F, Tybjærg-Hansen A, Froguel P, Danesh J, Petretto E, Blankenberg S, Tiret L, Richardson S. GUESS-ing polygenic associations with multiple phenotypes using a GPU-Based evolutionary stochastic search algorithm. PLoS Genet, 2013, 9: e1003657
[62]Bolormaa S, Pryce J E, Reverter A, Zhang Y, Barendse W, Kemper K, Tier B, Savin K, Hayes B J, Goddard M E. A multi-trait, meta-analysis for detecting pleiotropic polymorphisms for stature, fatness and reproduction in beef cattle. PLoS Genet, 2014, 10: e1004198
[63]Xu Y, Hu W M, Yang Z F, Xu C W. A multivariate partial least squares approach to joint analysis for multiple correlated traits. Crop J, 2016, 4(1): 21–29
[64]Korte A, Vilhjálmsson B J, Segura V, Platt A, Long Q, Nordborg M. A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nat Genet, 2012, 44: 1066–1071
[65]Zhou X, Stephens M. Efficient algorithm for multivariate linear mixed models in genome-wide association studies. Nat Methods, 2014, 11: 407–409
[66]Casale F P, Rakitsch B, Lippert C, Stegle O. Efficient set tests for the genetic analysis of correlated traits. Nat Methods, 2015, 12: 755–758
[67]Furlotte N A, Eskin E. Efficient multiple-trait association and estimation of genetic correlation using the matrix-variate linear mixed model. Genetics, 2015, 200: 59–68
[68]Wan X, Yang C, Yang Q, Xue H, Tang N L S, Yu W C. Predictive rule inference for epistatic interaction detection in genome-wide association studies. Bioinformatics, 2010, 26: 30–37
[69]Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633–2635
[70]Tang Y, Liu X, Wang J, Li M, Wang Q, Tian F, Su Z, Pan Y, Liu D, Lipka A E, Buckler E S, Zhang Z. GAPIT Version 2: Enhanced integrated tool for genomic association and prediction. Plant Genome, 2016, 9(2): doi: 10.3835/plantgenome2015.11.0120
[71]张福涛. 遗传分析方法的GPU并行计算与优化研究. 浙江大学博士学位论文, 浙江杭州, 2014. pp 89–97
Zhang F T. Parallelization and Optimization of GPU Computation for Genetic Analysis Methods. PhD Dissertation of Zhejiang University, Hangzhou, China, 2014. pp 89–97 (in Chinese with English abstract)
[72]Sul J H, Bilow M, Yang W-Y, Kostem E, Furlotte N, He D, Eskin E. Accounting for population structure in gene-by-environment interactions in genome-wide association studies using mixed models. PLoS Genet, 2016, 12(3): e1005849
[73]Collard B C Y, Mackill D J. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci, 2008, 363(1491): 557–572
[74]Andersen J R, Lǜbberstedt T. Functional markers in plants. Trends Plant Sci, 2003, 8: 554–560
[75]杨小红, 严建兵, 郑艳萍, 余建明, 李建生. 植物数量性状关联分析研究进展. 作物学报, 2007, 33: 523–530
Yang X H, Yan J B, Zheng Y P, Yu J M, Li J S. Reviews of association analysis for quantitative traits in plants. Acta Agron Sin, 2007, 33: 523–530 (in Chinese)
[76]谭贤杰, 吴子恺, 程伟东, 王天宇, 黎裕. 关联分析及其在植物遗传学研究中的应用. 植物学报, 2011, 46: 108–118
Tan X J, Wu Z K, Cheng W D, Wang T Y, Li Y. Association analysis and its application in plant genetic research. Chin Bull Bot, 2011, 46: 108–118 (in Chinese)
[77]布素红. 多亲本群体QTL定位和优异杂交组合预测. 南京农业大学博士学位论文, 江苏南京, 2015. pp 57–68
Bu S H. Mapping of Quantitative Trait Loci and Prediction of Elite Hybrid Combination in Multi-parental Populations. PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2015. pp 57–68 (in Chinese with English abstract)
[78]Chan E K F, Rowe H C, Kliebenstein D J. Understanding the evolution of defense metabolites in Arabidopsis thaliana using genome-wide association mapping. Genetics, 2010, 185: 991–1007
[79]Riedelsheimer C, Lisec J, Czedik-Eysenbreg A, Sulpice R, Flis A, Grieder C, Altmann T, Stitt M, Willmitzer L, Melchinger A E. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc Natl Acad Sci USA, 2012, 109: 8872–8877
[80]Wen W W, Li D, Li X, Gao Y Q, Li W Q, Li H H, Liu J, Liu H J, Chen W, Luo J, Yan J B. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat Commun, 2014, 5: 3438–3447

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[4] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[5] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[6] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[7] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[8] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[9] 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274.
[10] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[11] 雷维, 王瑞莉, 王刘艳, 袁芳, 孟丽姣, 邢明礼, 徐璐, 唐章林, 李加纳, 崔翠, 周清元. 甘蓝型油菜容重及其相关性状的全基因组关联分析[J]. 作物学报, 2021, 47(11): 2099-2110.
[12] 谢磊, 任毅, 张新忠, 王继庆, 张志辉, 石书兵, 耿洪伟. 小麦穗发芽性状的全基因组关联分析[J]. 作物学报, 2021, 47(10): 1891-1902.
[13] 荐红举, 霍强, 高玉敏, 李阳阳, 谢玲, 魏丽娟, 刘列钊, 卢坤, 李加纳. 用全基因组关联分析筛选甘蓝型油菜叶片叶绿素含量候选基因[J]. 作物学报, 2020, 46(10): 1557-1565.
[14] 邹伟伟,路雪丽,王丽,薛大伟,曾大力,李志新. 不同氮水平下水稻钾吸收及全基因组关联分析[J]. 作物学报, 2019, 45(8): 1189-1199.
[15] 赵小强,任斌,彭云玲,徐明霞,方鹏,庄泽龙,张金文,曾文静,高巧红,丁永福,陈奋奇. 8种水旱环境下2个玉米群体穗部性状QTL间的上位性及环境互作效应分析[J]. 作物学报, 2019, 45(6): 856-871.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!