欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (07): 957-965.doi: 10.3724/SP.J.1006.2016.00945

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻斑马叶突变体zebra1349的表型鉴定及基因精细定位

郭国强1,2,3,孙学武2,孙平勇2,尹建英3,何强2,袁定阳2,*,邓华凤1,2,*,袁隆平1,2,*   

  1. 1湖南农业大学农学院, 湖南长沙 410128; 2湖南杂交水稻研究中心杂交水稻国家重点实验室, 湖南长沙 410125; 3衡阳市农业科学研究所, 湖南衡阳 421001
  • 收稿日期:2015-12-28 修回日期:2016-03-14 出版日期:2016-07-12 网络出版日期:2016-03-28
  • 通讯作者: 袁隆平, E-mail: lpyuan@hhrrc.ac.cn, Tel: 0731-89733455; 邓华凤, E-mail: dhf@hhrrc.ac.cn; 袁定阳, E-mail: yuandingyang@hhrrc.ac.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目“强优势水稻杂交种的创制与应用”(2011AA10A101)和衡阳市科技局重点项目“黄色带状标记基因在两用核不育系中的利用” (2011KZ15)资助。

Morphological Characterization and Fine Mapping of Zebra Leaf Mutant zebra1349 in Rice (Oryza sativa L.)

GUO Guo-Qiang1,2,3,SUN Xue-Wu2,SUN Ping-Yong2,YIN Jian-Ying3,HE Qiang2,YUAN Ding-Yang2,*,DENG Hua-Feng1,2,*,YUAN Long-Ping1,2,*   

  1. 1 College of Agronomy, Hunan Agricultural University, Changsha 410128, China; 2 State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; 3 Hengyang Agricultural Science Research Institute, Hengyang 421001, China
  • Received:2015-12-28 Revised:2016-03-14 Published:2016-07-12 Published online:2016-03-28
  • Contact: 袁隆平, E-mail: lpyuan@hhrrc.ac.cn, Tel: 0731-89733455; 邓华凤, E-mail: dhf@hhrrc.ac.cn; 袁定阳, E-mail: yuandingyang@hhrrc.ac.cn
  • Supported by:

    The study was supported by the grants from National High-tech R&D Program of China (863 Program)(2011AA10A101) and the Key Project Funded by the Hengyang Science And Technology Bureau (2011KZ15).

摘要:

从恢复系育种材料[R128//(R318/R1025)F1] F6中获得一个新的斑马叶突变体zebra1349突变体秧苗期如果不移栽,与野生型一样表现绿色,移栽后5 d新抽出的叶片包括叶鞘会呈现出与叶脉垂直的黄绿相间的条纹,移栽后30 d抽出的叶片又表现正常绿色,成熟期主要农艺性状与野生型无明显差异。与野生型相比,突变体六叶期斑马叶黄区部位的总叶绿素、叶绿素a、叶绿素b和类胡萝卜素的含量分别下降了55.86%、61.02%、39.34%和47.03%。透射电镜(TEM)观察表明, 突变体斑马叶绿区部位叶绿体发育正常;黄区部位叶肉细胞中叶绿体结构异常,类囊体膜退化和分解严重,类囊体基粒片层数量明显减少,片层间距拉大,排列疏松。对zebra1349与正常叶色品种杂交F1、F2代的遗传分析表明该性状受1对隐性核基因调控。利用1192株zebra1349/02428F2隐性定位群体, 最终把ZEBRA1349基因定位在水稻第12染色体InDel标记indel39和indel44之间,其遗传距离分别为0.04 cM和0.17 cM,根据日本晴基因组序列推测,两标记之间的物理距离约为89 kb。本研究为ZEBRA1349基因的图位克隆和功能研究以及分子标记辅助育种奠定了基础。

关键词: 水稻(Oryza sativa L.), 斑马叶突变体, 叶绿体, 基因精细定位

Abstract:

A new zebra leaf mutant zebra1349 was attained in a restorer line crossing population of [R128//(R318/R1025) F1] F6 in Hengyang Agricultural Science Research Institute. This mutant showed normal green leaves at seedlings stage, but a zebra leaf phenotype with green-yellow bands in penpendicular to leaf vein appeared at five days after transplanting, which was most obvious at sixth-leaf stage, and recovered normal green leaves around 30 days (ninth-leaf stage) after transplanting. Until the mature stage, the zebra1349 mutant showed insignificant difference with the wild type in major agronomic traits. The contents of total chlorophyll, chlorophyll a, chlorophyll b and carotenoid in yellow parts of the mutant leaf at sixth-leaf stage decreased by 55.86%, 61.02%, 39.34% and 47.03%, respectively. Transmission Electron Microscopic (TEM) results indicated that the chloroplast of the mutant yellow leaf showed a serious thylakoid membrane degradation and decomposition, and the number of thylakoid grana lamella decreased significantly with larger gap and looser arrangement. Genetic analysis using F1 and F2 of the reciprocal crosses between zebra1349 and normal green rice varieties revealed that the zebra-leaf trait was controlled by one pair of recessive nuclear genes. With 1192 recessive plants in a F2 population from the cross between zebra1349 mutant and normal green variety 02428, the ZEBRA1349 gene was finely mapped between two InDel markers indel39 and indel44 on chromosome 12 with a genetic distance of 0.04 cM and 0.17 cM respectively, and the physical distance was 89 kb based on comparing with the reference genome of Japonica rice Nipponbare. These results provide a foundation for further map-based cloning of ZEBRA1349 and molecular marker-assisted breeding.

Key words: Rice (Oryza sativa L.), Zebra leaf mutant, Chloroplast, Gene fine mapping

[1]Awan M A, Konzak C F, Rutger J N, Nilan R A. Mutagenic effects of sodium azide in rice. Crop Sci, 1980, 20: 663−668
[2]黄晓群, 赵海新, 董春林, 孙业盈, 王平荣, 邓晓建. 水稻叶绿素合成缺陷突变体及其生物学研究进展. 西北植物学报, 2005, 25: 1685−1691
Huang X Q, Zhao H X, Dong C L, Sun Y Y, Wang P R, Deng X J. Chlorophyll-deficit rice mutants and their research advances in biology. Acta Bot Boreali-Occident Sin, 2005, 25: 1685−1691 (in Chinese with English abstract)
[3]Fambrini M, Castagna A, Dalla Vecchia F, Degl'innocenti E, Ranieri A, Vernieri P, Pardossi A, Guidi L, Rascio N, Pugliesi C. Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced PSII activity and low endogenous level of abscisic acid. Plant Sci, 2004, 167: 79−89
[4]Parks B M, Quail P H. Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biologysynthesis. Plant Cell, 1991, 3: 1177−1186
[5]Agrawal G K, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H. Screening of the rice viviparous mutants generated by endogenous retrotransposon tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol, 2001, 125: 1248−1257
[6]Stern D B, Hanson M R, Barkan A. Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends Plant Sci, 2004, 9: 293−301
[7]沈圣泉, 舒庆尧, 吴殿星, 陈善福, 夏英武. 白化转绿型水稻三系不育系白丰A的选育. 杂交水稻, 2005, 20(5): 10−11
Shen S Q, Shu Q Y, Wu D X, Chen S F, Xia Y W. Breeding of new rice CMS line Baifeng A with a green-revertible albino leaf color marker. Hybrid Rice, 2005, 20(5): 10−11 (in Chinese with English abstract)
[8]邓晓娟, 张海清, 王悦, 舒志芬, 王国槐, 王国梁. 水稻叶色突变基因研究进展. 杂交水稻, 2012, 27(5): 9−14
Deng X J, Zhang H Q, Wang Y, Shu Z F, Wang G H, Wang G L. Research advances on rice leaf-color mutant genes. Hybrid Rice, 2012, 27(5): 9−14 (in Chinese with English abstract)
[9]谭炎宁, 孙学武, 袁定阳, 孙志忠, 余东, 何强, 段美娟, 邓华凤, 袁隆平. 水稻单叶独立转绿型黄化突变体grc2的鉴定与基因精细定位. 作物学报, 2015, 41: 831−837
Tan Y N, Sun X W, Yuan D Y, Sun Z Z, Yu D, He Q, Duan M J, Deng H F, Yuan L P. Identification and fine mapping of green-revertible chlorina gene grc2 in rice (Oryza sativa L.). Acta Agron Sin, 2015, 41: 831−837 (in Chinese with English abstract)
[10]钱前, 朱旭东, 曾大力, 张小惠, 严学强, 熊振民. 细胞质基因控制的新特异材料白绿苗的研究. 作物品种资源, 1996, (4): 11−12
Qian Q, Zhu X D, Zeng D L, Zhang X H, Yan X Q, Xiong Z M. The study on a new special material, white-green rice which controlled by plasma gene. J Crop Resour, 1996, (4): 11−12 (in Chinese)
[11]李贤勇, 王楚桃, 李顺武, 何永歆, 陈世全. 一个水稻高叶绿素含量基因的发现. 西南农业学报, 2002, 15(4): 122−123
Li X Y, Wang C T, Li S W, He Y Y, Chen S Q. The discovery of a high chlorophyll content gene in rice. Southwest China J Agric Sci, 2002, 15(4): 122−123 (in Chinese)
[12]Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463−472
[13]Zhang H T, Li J J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice chlorina-1 and chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325−337
[14]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29−40
[15]Lee S, Kim J H, Yoo E S, Lee C H, Hirohika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805−818
[16]Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol, 2004, 45: 985−996
[17]Yoo S C, Cho S H, Sugimoto H, Li J, Kusumi K, Koh H J, Koh I, Paek N C. Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol, 2009, 150: 388−401
[18]Gothandam K M, Kim E S, Cho H J, Chung Y Y. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol, 2005, 58: 421−433
[19]Park S Y, Yu J W, Park J S, Li J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J, Jeon J S, Park Y I, Paek N C. The senescence-induced stay green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649−1664
[20]Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362−1375
[21]Yutaka S, Ryouhei M, Susumu K, Minoru N, Ayumi T, Makoto K. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J, 2009, 57: 120−131
[22]Wang P R, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J. Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiol, 2010, 153: 994−1003
[23]Lichtenthaler H K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 148: 350–382
[24]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4326
[25]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832
[26]Iwata N, Omura T, Sato H. Linkage studies in rice (Oryza sativa L.) on some mutants for physiological leaf spots. Fac Agr Kushu Univ, 1978, 22: 243–251
[27]Wang Q S, S C, Ling Y H, Zhao F M, Yang Z L, Li Y F, He G H. Genetic analysis and molecular mapping of a novel gene for zebra mutation in rice (Oryza sativa L.). J Genet Genomics, 2009, 36: 679–684
[28]李燕群,钟萍,高志艳,朱柏羊,陈丹,孙昌辉,王平荣,邓晓建. 水稻斑马叶突变体zebra524的表型鉴定及候选基因分析. 中国农业科学, 2014, 47: 2907–2915
Li Y Q, Zhong P, Gao Z Y, Zhu B Y, Chen D, Sun C H, Wang P R, Deng X J. Morphological characterization and candidate gene analysis of zebra leaf mutant zebra524 in rice. Sci Agric Sin, 2014, 47: 2907–2915
[29]Li J J, Pandeya D, Nath K, Zulfugarov I S, Yoo S C, Zhang H T, Yoo J H, Cho S H, Koh H Jon, Kim D S, Seo H S, Kang B C, Lee C H, Paek N C. ZEBRA-NECROSIS, a thylakoid-bound protein, is critical for the photoprotection of developing chloroplasts during early leaf development. Plant J, 2010, 62: 713–725
[30]Chai C L, Fang J, Liu Y, Tong H N, Gong Y Q, Wang Y Q, Liu M, Wang Y P, Qian Q, Cheng Z K, Chu C C. ZEBRA2, encoding a carotenoid isomerase, is involved in photo protection in rice. Plant Mol Biol, 2011, 75: 211–221
[31]Mao D H, Yu H H, Liu T M, Yang G Y, Xing Y Z. Two complementary recessive genes in duplicated segments control etiolation in rice. Theor Appl Genet, 2011, 122(2): 373–383
[32]Dong Y J, Lin D Z, Mei J, Su Q Q, Zhang J H, Ye S H, Zhang X M. Genetic analysis and molecular mapping of a thermo-sensitive chlorosis mutant in rice. Mol Plant Breed, 2013, 11: 1–7
[33]Shi J Q, Wang Y Q, Guo S, Ma L, Wang Z W, Zhu X Y, Sang X C, Ling Y H, Wang N, Zhao F M, He G H. Molecular mapping and candidate gene analysis of a yellow-green leaf 6 (ygl6). Crop Sci, 2014, 55: 669-680
[34]Kusumi K, Chono Y, Shimada H, Gotoh E, Tsuyama M, Iba K. Chloroplast biogenesis during the early stage of leaf development in rice. Plant Biotechnol, 2010, 27: 85–90
[35]Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Ret M L, Martin-Magniette M L, Mireau H, Peeters N, Renou J P, Szurek Boris, Taconnat L, Small I. Genome-wide analysis of arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell, 2004, 16: 2089–2103
[36]Su N, Hu M L, Wu D X, Wu F Q, Fei G L, Lan Y, Chen X L, Shu X L,Zhang X, Guo X P, Cheng Z J, Lei C L, Qi C K, Jiang L, Wang H Y, Wan J M. Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol, 2012, 159: 227–238
[37]舒庆尧,夏英武,左晓旭,刘贵付. 二系杂交水稻制繁种中利用标记辅助去杂技术. 浙江农业大学学报, 1996, 22(1): 56–60
Shu Q Y, Xia Y W, Zuo X X, Liu G F. Maker-assisted elimination of contamination on two-line hybrid rice seed production and multiplication. J Zhejiang Agric Univ, 1996, 22(1): 56–60 (in Chinese)

[1] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[2] 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675.
[3] 翟玉山,赵贺,张海,邓宇晴,程光远,杨宗桃,王彤,彭磊,徐倩,董萌,徐景升. 甘蔗NAD(P)H脱氢酶复合体O亚基基因克隆及其与甘蔗花叶病毒VPg互作[J]. 作物学报, 2019, 45(10): 1478-1487.
[4] 程亚娇,范元芳,谌俊旭,王仲林,谭婷婷,李佳凤,李盛蓝,杨峰,杨文钰. 光照强度对大豆叶片光合特性及同化物的影响[J]. 作物学报, 2018, 44(12): 1867-1874.
[5] 施军琼, 王亚琴, 张天泉, 马玲, 桑贤春, 何光华. 水稻黄绿叶基因Yellow-Green Leaf 6 (YGL6)的表达模式与蛋白定位[J]. 作物学报, 2018, 44(05): 650-656.
[6] 刘红艳,周芳,李俊,杨敏敏,周婷,郝国存,赵应忠. 芝麻黄化突变体YL1的叶片解剖学及光合特性[J]. 作物学报, 2017, 43(12): 1856-1863.
[7] 范元芳,杨峰*,刘沁林,谌俊旭,王锐,罗式伶,杨文钰*. 套作荫蔽对苗期大豆叶片结构和光合荧光特性的影响[J]. 作物学报, 2017, 43(02): 277-285.
[8] 刘钰龙,刘峰,周坤能,苏晓妹,方先文,张云辉,鲍依群. 水稻温敏型叶片白化突变体tsa1的表型鉴定和基因定位[J]. 作物学报, 2016, 42(12): 1754-1763.
[9] 杨波,夏敏,张孝波,王晓雯,朱小燕,何沛龙,何光华,桑贤春*. 水稻早衰突变体esl6的鉴定与基因定位[J]. 作物学报, 2016, 42(07): 976-983.
[10] 冯萍,邢亚迪,刘松,郭爽,朱美丹,娄启金,桑贤春,何光华,王楠. 水稻卷叶突变体rl28的特性与基因定位[J]. 作物学报, 2015, 41(08): 1164-1171.
[11] 张天泉,郭爽,邢亚迪,杜丹,桑贤春,凌英华,何光华. 水稻新黄绿叶基因YGL9的分子定位[J]. 作物学报, 2015, 41(07): 989-997.
[12] 谭炎宁,孙学武,袁定阳,孙志忠,余东,何强,段美娟,邓华凤,袁隆平. 水稻单叶独立转绿型黄化突变体grc2的鉴定与基因精细定位[J]. 作物学报, 2015, 41(06): 831-837.
[13] 张涛,孙玉莹,郑建敏,程治军,蒋开锋,杨莉,曹应江,游书梅,万建民,郑家奎. 水稻早衰叶突变体PLS2的遗传分析与基因定位[J]. 作物学报, 2014, 40(12): 2070-2080.
[14] 王兴春,王敏,季芝娟,陈钊,刘文真,韩渊怀,杨长登. 水稻糖苷水解酶基因OsBE1在叶绿体发育中的功能[J]. 作物学报, 2014, 40(12): 2090-2097.
[15] 陈玉宇,朱玉君,张宏伟,王琳琳,樊叶杨,庄杰云. 水稻第1染色体长臂上微效千粒重QTL qTGW1.2的验证与分解[J]. 作物学报, 2014, 40(05): 761-768.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!