[1]Awan M A, Konzak C F, Rutger J N, Nilan R A. Mutagenic effects of sodium azide in rice. Crop Sci, 1980, 20: 663−668
[2]黄晓群, 赵海新, 董春林, 孙业盈, 王平荣, 邓晓建. 水稻叶绿素合成缺陷突变体及其生物学研究进展. 西北植物学报, 2005, 25: 1685−1691
Huang X Q, Zhao H X, Dong C L, Sun Y Y, Wang P R, Deng X J. Chlorophyll-deficit rice mutants and their research advances in biology. Acta Bot Boreali-Occident Sin, 2005, 25: 1685−1691 (in Chinese with English abstract)
[3]Fambrini M, Castagna A, Dalla Vecchia F, Degl'innocenti E, Ranieri A, Vernieri P, Pardossi A, Guidi L, Rascio N, Pugliesi C. Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced PSII activity and low endogenous level of abscisic acid. Plant Sci, 2004, 167: 79−89
[4]Parks B M, Quail P H. Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biologysynthesis. Plant Cell, 1991, 3: 1177−1186
[5]Agrawal G K, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H. Screening of the rice viviparous mutants generated by endogenous retrotransposon tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol, 2001, 125: 1248−1257
[6]Stern D B, Hanson M R, Barkan A. Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends Plant Sci, 2004, 9: 293−301
[7]沈圣泉, 舒庆尧, 吴殿星, 陈善福, 夏英武. 白化转绿型水稻三系不育系白丰A的选育. 杂交水稻, 2005, 20(5): 10−11
Shen S Q, Shu Q Y, Wu D X, Chen S F, Xia Y W. Breeding of new rice CMS line Baifeng A with a green-revertible albino leaf color marker. Hybrid Rice, 2005, 20(5): 10−11 (in Chinese with English abstract)
[8]邓晓娟, 张海清, 王悦, 舒志芬, 王国槐, 王国梁. 水稻叶色突变基因研究进展. 杂交水稻, 2012, 27(5): 9−14
Deng X J, Zhang H Q, Wang Y, Shu Z F, Wang G H, Wang G L. Research advances on rice leaf-color mutant genes. Hybrid Rice, 2012, 27(5): 9−14 (in Chinese with English abstract)
[9]谭炎宁, 孙学武, 袁定阳, 孙志忠, 余东, 何强, 段美娟, 邓华凤, 袁隆平. 水稻单叶独立转绿型黄化突变体grc2的鉴定与基因精细定位. 作物学报, 2015, 41: 831−837
Tan Y N, Sun X W, Yuan D Y, Sun Z Z, Yu D, He Q, Duan M J, Deng H F, Yuan L P. Identification and fine mapping of green-revertible chlorina gene grc2 in rice (Oryza sativa L.). Acta Agron Sin, 2015, 41: 831−837 (in Chinese with English abstract)
[10]钱前, 朱旭东, 曾大力, 张小惠, 严学强, 熊振民. 细胞质基因控制的新特异材料白绿苗的研究. 作物品种资源, 1996, (4): 11−12
Qian Q, Zhu X D, Zeng D L, Zhang X H, Yan X Q, Xiong Z M. The study on a new special material, white-green rice which controlled by plasma gene. J Crop Resour, 1996, (4): 11−12 (in Chinese)
[11]李贤勇, 王楚桃, 李顺武, 何永歆, 陈世全. 一个水稻高叶绿素含量基因的发现. 西南农业学报, 2002, 15(4): 122−123
Li X Y, Wang C T, Li S W, He Y Y, Chen S Q. The discovery of a high chlorophyll content gene in rice. Southwest China J Agric Sci, 2002, 15(4): 122−123 (in Chinese)
[12]Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463−472
[13]Zhang H T, Li J J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice chlorina-1 and chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325−337
[14]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29−40
[15]Lee S, Kim J H, Yoo E S, Lee C H, Hirohika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805−818
[16]Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol, 2004, 45: 985−996
[17]Yoo S C, Cho S H, Sugimoto H, Li J, Kusumi K, Koh H J, Koh I, Paek N C. Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol, 2009, 150: 388−401
[18]Gothandam K M, Kim E S, Cho H J, Chung Y Y. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol, 2005, 58: 421−433
[19]Park S Y, Yu J W, Park J S, Li J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J, Jeon J S, Park Y I, Paek N C. The senescence-induced stay green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649−1664
[20]Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362−1375
[21]Yutaka S, Ryouhei M, Susumu K, Minoru N, Ayumi T, Makoto K. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J, 2009, 57: 120−131
[22]Wang P R, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J. Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiol, 2010, 153: 994−1003
[23]Lichtenthaler H K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 148: 350–382
[24]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4326
[25]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832
[26]Iwata N, Omura T, Sato H. Linkage studies in rice (Oryza sativa L.) on some mutants for physiological leaf spots. Fac Agr Kushu Univ, 1978, 22: 243–251
[27]Wang Q S, S C, Ling Y H, Zhao F M, Yang Z L, Li Y F, He G H. Genetic analysis and molecular mapping of a novel gene for zebra mutation in rice (Oryza sativa L.). J Genet Genomics, 2009, 36: 679–684
[28]李燕群,钟萍,高志艳,朱柏羊,陈丹,孙昌辉,王平荣,邓晓建. 水稻斑马叶突变体zebra524的表型鉴定及候选基因分析. 中国农业科学, 2014, 47: 2907–2915
Li Y Q, Zhong P, Gao Z Y, Zhu B Y, Chen D, Sun C H, Wang P R, Deng X J. Morphological characterization and candidate gene analysis of zebra leaf mutant zebra524 in rice. Sci Agric Sin, 2014, 47: 2907–2915
[29]Li J J, Pandeya D, Nath K, Zulfugarov I S, Yoo S C, Zhang H T, Yoo J H, Cho S H, Koh H Jon, Kim D S, Seo H S, Kang B C, Lee C H, Paek N C. ZEBRA-NECROSIS, a thylakoid-bound protein, is critical for the photoprotection of developing chloroplasts during early leaf development. Plant J, 2010, 62: 713–725
[30]Chai C L, Fang J, Liu Y, Tong H N, Gong Y Q, Wang Y Q, Liu M, Wang Y P, Qian Q, Cheng Z K, Chu C C. ZEBRA2, encoding a carotenoid isomerase, is involved in photo protection in rice. Plant Mol Biol, 2011, 75: 211–221
[31]Mao D H, Yu H H, Liu T M, Yang G Y, Xing Y Z. Two complementary recessive genes in duplicated segments control etiolation in rice. Theor Appl Genet, 2011, 122(2): 373–383
[32]Dong Y J, Lin D Z, Mei J, Su Q Q, Zhang J H, Ye S H, Zhang X M. Genetic analysis and molecular mapping of a thermo-sensitive chlorosis mutant in rice. Mol Plant Breed, 2013, 11: 1–7
[33]Shi J Q, Wang Y Q, Guo S, Ma L, Wang Z W, Zhu X Y, Sang X C, Ling Y H, Wang N, Zhao F M, He G H. Molecular mapping and candidate gene analysis of a yellow-green leaf 6 (ygl6). Crop Sci, 2014, 55: 669-680
[34]Kusumi K, Chono Y, Shimada H, Gotoh E, Tsuyama M, Iba K. Chloroplast biogenesis during the early stage of leaf development in rice. Plant Biotechnol, 2010, 27: 85–90
[35]Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Ret M L, Martin-Magniette M L, Mireau H, Peeters N, Renou J P, Szurek Boris, Taconnat L, Small I. Genome-wide analysis of arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell, 2004, 16: 2089–2103
[36]Su N, Hu M L, Wu D X, Wu F Q, Fei G L, Lan Y, Chen X L, Shu X L,Zhang X, Guo X P, Cheng Z J, Lei C L, Qi C K, Jiang L, Wang H Y, Wan J M. Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol, 2012, 159: 227–238
[37]舒庆尧,夏英武,左晓旭,刘贵付. 二系杂交水稻制繁种中利用标记辅助去杂技术. 浙江农业大学学报, 1996, 22(1): 56–60
Shu Q Y, Xia Y W, Zuo X X, Liu G F. Maker-assisted elimination of contamination on two-line hybrid rice seed production and multiplication. J Zhejiang Agric Univ, 1996, 22(1): 56–60 (in Chinese) |