欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (02): 218-225.doi: 10.3724/SP.J.1006.2017.00218

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生AhHDA1互作蛋白AhGLK的筛选及特性分析

李媚娟,苏良辰,刘帅,李晓云*,李玲*   

  1. 广东省植物发育生物工程重点实验室,华南师范大学生命科学学院,广东广州 510631
  • 收稿日期:2016-04-02 修回日期:2016-09-18 出版日期:2017-02-12 网络出版日期:2016-09-28
  • 通讯作者: 李晓云, E-mail: xiaoyun5893@qq.com, Tel: 020-85211378; 李玲, E-mail: liling502@126.com, Tel: 020-85211378
  • 基金资助:

    本研究由国家自然科学基金项目(31471422, 31671600)资助。

Screening of AhHDA1 Interacting-Protein AhGLK and Characterization in Peanut (Arachis hypogaea L.)

LI Mei-Juan,SU Liang-Chen,LIU Shuai,LI Xiao-Yun*,LI Ling*   

  1. Guangdong Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou, 510631, China
  • Received:2016-04-02 Revised:2016-09-18 Published:2017-02-12 Published online:2016-09-28
  • Contact: 李晓云, E-mail: xiaoyun5893@qq.com, Tel: 020-85211378; 李玲, E-mail: liling502@126.com, Tel: 020-85211378
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31471422, 31671600).

摘要:

通过酵母双杂交系统,以花生组蛋白去乙酰化酶AhHDA1为诱饵, 对花生cDNA文库筛选并分析互作蛋白的生物学特性。结果获得一个AhHDA1互作蛋白Arachis hypogaea L. Golden 2-like (AhGLK);体外荧光双分子试验证实,AhHDA1与AhGLK蛋白存在相互作用;利用生物信息学软件分析表明,AhGLK含有MYB保守域,其氨基酸序列与大豆(Glyine soja) GsGLK、拟南芥(Arabidopsis thaliana) AtGLK分别具有较高同源性;AhGLK定位在细胞核中并具有转录因子活性,主要在花生的叶片中表达;在30% PEG条件下,AhGLK表达下调。

关键词: 花生, AhHDA1, 蛋白互作, AhGLK, 转录活性

Abstract:

With AhHDA1 as bait, the peanut (Arachis hypogaea L.) cDNA library was screened and characteristics of the interacting-protein was analysed, getting a protein of Golden 2-like (AhGLK) interacted with AhHDA1 which was proved by yeast two-hybrid experiments, and further confirmed by bimolecular fluorescence complementation (BiFC) assay. Bioinformatics software analysis indicated that AhGLK contained a MYB conserved domain having high homology with GsGLK (Glyine soja) and AtGLK (Arabidopsis thaliana). AhGLK was found to be located in nucleus and testified as a transcriptional activation factor. Tissue specific analysis showed that AhGLK accumulated in leaves mainly, and the expression was down-regulated by 30% PEG treatment. The results lay a foundation for further study on AhGLK, which might be involved in drought stress resistance of peanut.

Key words: Peanut, AhHDA1, Interacting protein, AhGLK, Transcriptional activity

[1] Zhu J K. Salt and drought stress signal transduction in plants. Ann Rev Plant Biol, 2002, 53: 247–273
[2] Loidl P. A plant dialect of the histone language. Trends Plant Sci, 2004, 9: 80–90
[3] Fong P M, Tian L, Chen Z J. Arabidopsis thaliana histone deacetylase 1 (AtHD1) is localized in euchromatic regions and demonstrates histone deacetylase activity in vitro. Cell Res, 2006, 16: 479–488
[4] Zhong X, Zhang H, Zhao Y, Sun Q, Hu Y F, Peng H, Zhou D X. The rice NAD(+)-dependent histone deacetylase OsSRT1 targets preferentially to stressand metabolism- related genes and transposable elements. PLoS One, 2013, 8(6): p.e66807
[5] Ma X J, Lv S B, Zhang C, Yang C P. Histone deacetylases and their functions in plants. Plant Cell Rep, 2013, 32: 465–478
[6] Devoto A, Nieto-Rostro M, Xie D X, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner J. COI1 links jasmonate signalling and fertility to the SCF ubiquitinligase complex in Arabidopsis. Plant J, 2002, 32: 457–466
[7] Tanaka M, Kikuchi A, Kamada H, Kamada H. The Arabidopsis histonedeacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol, 2008, 146: 149–161
[8] Zhou C H, Zhang L, Duan J, Miki B, Wu K Q. HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell, 2005, 17: 1196–1204
[9] Cigliano R A, Cremona G, Paparo R, Termolino P, Perrella G, Gutzat R, Consiglio M F, Conicella C. Histone deacetylase AtHDA7 is required for female gametophyte and embryo development in Arabidopsis. Plant Physiol, 2013, 163, 431–440
[10] Liu C, Li L C, Chen W Q, Chen X, Xu Z H, Bai S N. HDA18 affects cell fate in Arabidopsis root epidermis via histone acetylation at four kinase genes. Plant Cell, 2013, 25: 257–269
[11] Martijn V Z, Christian Z, Zhi W, Christina P, Annaick C, Li Y, Noortje G K, Liu Y X, Soppe W J. HISTONE DEACETYLASE 9 represses seedling traits in Arabidopsis thaliana dry seeds. Plant J, 2014, 80: 475–488
[12] Zhao L, Wang P, Hou H, Zhang H, Wang Y, Yan S, Huang Y, Li H, Tan J, Hu A, Gao F, Zhang Q, Li Y, Zhou H, Zhang W, Li L. Transcriptional regulation of cell cycle genes in response to abiotic stresses correlates with dynamic changes in histone modifications in maize. PLoS One, 2014, 9: e106070
[13] Li X Y, Lu J B, Liu S, Liu X, Lin Y Y, Li L. Identification of rapidly induced genes in the response of peanut (Arachis hypogaea) to water deficit and abscisic acid. BMC Biotechnol, 2014, 14: 116–119
[14] Su L C, Deng B, Liu S, Li L M, Hu B, Zhong Y T, Li L. Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachis hygogaea. Front Plant Sci, 2015, 6: 512-522
[15] Santos-Rosa H, Schneider R, Bannister A J, Sherriff J, Bernstein B E, Emre N C, Schreiber S L, Mellor J, Kouzarides T. Active genes are tri-methylated at K4 of histone H3. Nature, 2002, 419: 407–411
[16] Riechmann J L, Heard J, Martin G, Reuber L, Jiang C Z, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Broun P, Zhang J Z, Ghandehair D, Sherman B K, Yu G L. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105–2110
[17] Kang J, Yu H, Tian C, Zhou W, Li C, Liao Y, Liu D. Suppression of photosynthetic gene expression in roots is required for sustained root growth under phosphate deficiency. Plant Physiol, 2014, 165: 1156–1170
[18] Wang P, Fouracre J, Kelly S, Karki S, Gowik U, Aubry S, Shaw M K, Westhoff P, Slamet-Loedin I H, Quick W P, Hibberd J M, Langdale J A. Evolution of GOLDEN2-LIKE gene function in C3 and C4plants. Planta, 2012, 237: 481–495
[19] Nguyen C V, Vrebalov J T, Gapper N E, Yi Z, silin Z, Zhang J F, James J, Giovannoni. Tomato GOLDEN2-LIKE transcription factors reveal molecular gradients that function during fruit development and ripening. Plant Cell, 2014, 26: 585–601
[20] Fitter D W, Martin M J, Copley D J, Scotland R W, Langdale J A. GLK gene pairs regulate chloroplast development in diverse plant species. Plant J, 2002, 31: 713–727
[21] Murmu J, Wilton M, Allard G, Pandeya R, Desveaux D, Singh J, Subramaniam R. Arabidopsis GOLDEN2-LIKE (GLK) transcription factors activate jasmonic acid (JA)-dependent disease susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis, as well as JA-independent plant immunity against the necrotrophic pathogen Botrytis cinerea. Mol Plant Pathol, 2014, 15: 174–184
[22] Rauf M, Arif M, Dortay H, Matallana-Ramirez L P, Waters M T, Nam H G, Lim P O, Mueller-Roeber B, Balazadeh S. ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription. Embo Reports, 2013, 14: 382–388
[23] Cress W D, Seto E. Histone deacetylases, transcriptional control, and cancer. J Cell Physiol, 2000, 184: 1–16
[24] Sarah F, Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 2002, 14: 1675–1690
[25] Bunch N L, Spasojevic M, Shprits Y Y, Gu X, Foust F. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J, 2002, 31: 279–292

[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[5] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[6] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[7] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[8] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[9] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[10] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[11] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[12] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[13] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[14] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[15] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!