作物学报 ›› 2017, Vol. 43 ›› Issue (04): 496-500.doi: 10.3724/SP.J.1006.2017.00496
宫希1,蒋云峰2,徐彬杰2,乔媛媛2,华诗雨1,吴旺1,马建2,周小鸿2,祁鹏飞2,*,兰秀锦2
GONG Xi1,JIANG Yun-Feng2,XU Bin-Jie2,QIAO Yuan-Yuan2,HUA Shi-Yu1,WU Wang1,MA Jian2,ZHOU Xiao-Hong2,QI Peng-Fei2,*,LAN Xiu-Jin2
摘要:
芒长是普通小麦的重要农艺性状,受多个基因控制。本研究利用长芒的普通小麦郑麦9023与无芒的西藏半野生小麦Q1028构建一个重组自交系群体(186个株系);采用SSR和DArT分子标记,构建覆盖小麦全基因组的遗传图谱(2597 cM)。基于重组自交系群体两年芒长表型数据,采用ICIM作图法对小麦芒长性状进行QTL定位分析。共检测到2个与芒长相关的QTL,即Qwa.sau-4AS和Qwa.sau-5AL。它们分别位于4AS和5AL染色体上,可分别解释7.4%和27.3%的表型变异。这2个QTL效应可能分别来源于钩芒基因Hd与抑芒基因B1。利用连锁标记进行基因型分析,表明Qwa.sau-4AS与Qwa.sau-5AL对芒长的抑制效果具有累加效应,且Qwa.sau-5AL效应强于Qwa.sau-4AS。本研究将为精细定位及克隆这2个QTL奠定基础。
[1] Biscoe P V, Littleton E J, Scott R K. Stomatal control of gas exchange in barley awns. Ann Appl Biol, 1973, 75: 285–297 [2] Blum A . Photosynthesis and transpiration in leaves and ears of wheat and barley varieties. J Exp Bot, 1985, 36: 432–440 [3] 黄瑾, 骆惠生, 张勃, 贾秋珍, 金明安, 曹世勤, 金社林. 普通小麦芒的遗传分析. 甘肃农业科技, 2011, (2): 11–12 Huang J, Luo H S, Zhang B, Jia Q Z, Jin M A, Cao S Q, Jin S L. Genetic analysis of mount of common wheat. Gansu Agric Sci Tech, 2011, (2): 11–12 (in Chinese with English abstract) [4] 巴青松, 傅兆麟, 白凡杰. 小麦芒的研究. 淮北煤炭师范学院学报(自然科学版), 2010, 31(1): 29–33 Ba Q S, Fu Z l, Bai F J. The research of wheat awns. Journal of Huaibei Coal Industry Teachers College (Nat Sci Edn), 2010, 31(1): 29–33 (in Chinese with English abstract) [5] Maydup M L, Antonietta M, Graciano C, Guiamet J J, Tambussi E A. The contribution of the awns of bread wheat (Triticum aestivum L.) to grain filling: responses to water deficit and the effects of awns on ear temperature and hydraulic conductance. Field Crops Res, 2014, 167: 102–111 [6] 王忠, 顾蕴洁, 高煜珠. 麦芒的结构及其光合特性. 植物学报, 1993, 35: 921–928 Wang Z, Gu Y J, Gao Y Z. Structure and photosynthetic characteristics of awns of wheat and barley. Acta Bot Sin, 1993, 35: 921–928 (in Chinese with English abstract) [7] Li X J, Wang H G, Li H B, Zhang L Y, Teng N J, Lin Q Q, Wang J, Kuang T Y, Li Z S, Li B, Zhang A M, Lin J X. Awns play a dominant role in carbohydrate production during the grain-filling stages in wheat (Triticum aestivum). Physiol Plant, 2006, 127: 701–709 [8] Rebetzke G J, Bonnett D G, Reynolds M P. Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat. J Exp Bot, 2016, 67: 2573–2586 [9] 杜斌, 崔法, 王洪刚, 李兴锋. 小麦芒长抑制基因B1近等基因系的鉴定及遗传分析. 分子植物育种, 2010, 8: 259–264 Du B, Cui F, Wang H G, Li X F. Characterization and genetic analysis of near-isogenic lines for awn-inhibitor gene B1 of common wheat. Mol Plant Breed, 2010, 8: 259–264 (in Chinese with English abstract) [10] Elbaum R, Zaltzman L, Burgert I, Fratzl P. The Role of wheat awns in the seed dispersal unit. Science, 2007, 316: 884–886 [11] 姚国新, 张强, 吴建涛, 胡广隆, 李自超. 利用近等基因系对水稻芒基因AWN3-1的遗传定位. 中国农业大学学报, 2010, 15(5): 1–5 Yao G X, Zhang Q, Wu J T, Hu G L, Li Z C. Mapping awn gene AWN3-1 with near-isogenic line of rice. J China Agric Univ, 2010, 15(5): 1–5 (in Chinese with English abstract) [12] Kosuge K, Watanabe N, Kuboyama T, Melnik V M, Yanchenko V I, Rosova M A, Goncharov N P. Cytological and microsatellite mapping of mutant genes for spherical grain and compact spikes in durum wheat. Euphytica, 2008, 159: 289–296 [13] Li H, Han Y C, Guo X X, Xue F, Wang C Y, Ji W Q. Genetic effect of locus B2 inhibiting awning in double-ditelosomic 6B of Triticum durum DR147. Genet Resour Crop Evol, 2015, 62: 407–418 [14] 金善宝. 中国小麦学. 北京: 中国农业出版社, 1996. p 13 Jin S B. Wheat Science in China. Beijing: China Agriculture Press, 1996. p 13 (in Chinese) [15] Sourdille P, Cadalen T, Gay G, Gill B, Bernard M. Molecular and physical mapping of genes affecting awning in wheat. Plant Breed, 2002, 121: 320–324 [16] R?der M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007–2023 [17] Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114 [18] Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A. Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA, 2004, 101: 9915–9920 [19] Jiang Y F, Lan X J, Luo W, Kong X C, Qi P F, Wang J R, Wei Y M, Jiang Q T, Liu Y X, Peng Y Y, Chen G Y, Dai S F, Zheng Y L. Genome-wide quantitative trait locus mapping identifies multiple major loci for brittle rachis and threshability in Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao). PloS One, 2014, 9: e114066 [20] Meng L, Li H, Zhang L, Wang J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 121: 269–283 [21] Li H H, Ye G Y, Wang J K. A modified algorithm for the Improvement of Composite Interval Mapping. Genetics, 2007, 175: 361–374 [22] Wang Y J, Wang C Y, Zhang H, Yue Z N, Liu X L, Ji W Q. Genetic analysis of wheat (Triticum aestivum L.) and related species with SSR markers. Genet Resour Crop Evol, 2013, 60: 1105–1117 [23] Wang H Y, Wang X E, Liu D J. Assessment of genetic diversity of Yunnan, Tibetan, and Xinjiang wheat using SSR markers. J Genet Genomics, 2007, 34: 623–633 [24] Kosuge K, Watanabe N, Kuboyama T, Melnik V M ,Yanchenko V I ,Rosova M A , Goncharov N P. Comparison of the genetic diversity between Triticum aestivum ssp. tibetanum Shao and Tibetan wheat landraces (Triticum aestivum L.) by using intron-splice junction primers. Euphytica, 2008, 159: 289–296 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[3] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[4] | 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480. |
[5] | 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274. |
[6] | 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401. |
[7] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[8] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[9] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[10] | 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404. |
[11] | 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450. |
[12] | 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461. |
[13] | 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422. |
[14] | 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370. |
[15] | 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测[J]. 作物学报, 2021, 47(12): 2335-2347. |
|