欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (06): 839-848.doi: 10.3724/SP.J.1006.2017.00839

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

桑树1-氨基环丙烷-1-羧酸氧化酶基因(MnACO)启动子功能分析

余建,刘长英,赵爱春,王传宏,蔡雨翔,余茂德*   

  1. 西南大学生物技术学院 / 西南大学家蚕基因组生物学国家重点实验室,重庆 400715
  • 收稿日期:2016-07-25 修回日期:2017-01-21 出版日期:2017-06-12 网络出版日期:2017-02-17
  • 通讯作者: 余茂德, E-mail: yumd@163.com, Tel: 023-68250191
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项经费项目(201403064),重庆市研究生科研创新项目(CYS2015070),国家现代农业产业技术体系建设专项(CARS-22)资助。

Functional Analysis of 1-Aminocyclopropane-1-carboxylate Oxidase Gene’s Promoter in Mulberry

YU Jian,LIU Chang-Ying,ZHAO Ai-Chun,WANG Chuan-Hong,CAI Yu-Xiang,YU Mao-De*   

  1. College of Biotechnology, Southwest University / State Key Laboratory of Silkworm Genome Biology, Chongqing 400715, China?
  • Received:2016-07-25 Revised:2017-01-21 Published:2017-06-12 Published online:2017-02-17
  • Contact: Yu maode, E-mail: yumd@163.com, Tel: 023-68250191
  • Supported by:

    This study was supported by China Special Fund for Agro-scientific Research in the Public Interest (201403064), Graduate Research and Innovation Projects of Chongqing (CYS2015070), and the China Agriculture Research System (CARS-22).

摘要:

1-氨基环丙烷-1-羧酸氧化酶(ACO)作为关键酶,能够催化1-氨基环丙烷-1-羧酸(ACC)形成乙烯。为探究桑树MnACO基因在桑树生长发育和抵御外界胁迫中的功能,本研究构建了pMnACO::GUS的植物表达载体并转化拟南芥。采用GUS组织染色法鉴定转基因拟南芥不同生长阶段及胁迫处理后的GUS活性。通过PCR克隆得到MnACO1和MnACO2启动子片段,它们分别为1518 bp和1429 bp,启动子区域有大量的TATA-box、CAAT-box和其他响应外界刺激的顺式作用元件。GUS活性分析显示MnACO启动子能驱动GUS在拟南芥中表达;MnACO1启动子在拟南芥的根、叶片、花瓣、花药、花丝、柱头以及果荚中均有表达,且活性较MnACO2强;MnACO2启动子在果荚中无表达。转MnACO1和MnACO2植株经不同逆境处理后GUS表达活性不同,转MnACO1植株的GUS活性随处理延长时间而减弱,转MnACO2植株GUS活性随处理时间延长而增强。qRT-PCR检测2周苗龄的桑幼苗在经过胁迫处理后MaACO1和MaACO2的基因表达量,发现MaACO基因的表达模式与MnACO启动子GUS活性变化趋势一致。本研究结果表明,MnACO为诱导型启动子,MnACO1兼具组成型启动子特性,MnACO2兼具组织特异型启动子特性。MnACO1在转基因植株中对胁迫响应能力更强,预示着可将其用来调控改良桑树品种抗逆性靶基因;MaACO2可能与果实成熟有关,可将其启动子作为果实特异性启动子对桑椹品质进行合理改良。

关键词: 桑树, 乙烯, ACO, 启动子, GUS, 功能分析

Abstract:

1-Aminocyclopropane-1-carboxylate oxidase (ACO) as a key enzyme catalyzes the reaction from 1-Aminocyclopropane- 1-carboxylate (ACC) to ethylene. In order to explore the function of MnACO in mulberry growth and development and resisting external stresses, we constructed pMnACO::GUS fusion and transformed it into Arabidopsis thaliana, and used GUS histochemical staining to identify GUS activities of transgenic Arabidopsis thaliana treated by different stresses in different growth stages . MnACO1 and MnACO2 promoter fragments obtained by PCR were 1518 bp and 1429 bp, respectively. There were lots of cis-acting elements such as TATA-box, CAAT-box and others responded to external stimuli. MnACO promoter could drive GUS to express in Arabidopsis thaliana; MnACO1 promoter expressed in the root, leaf, flower petal, anther, filament, stigma and silique of Arabidopsis thaliana and their activities were higher than those of MnACO2; but there was no expression of MnACO2 promoter in silique. The pMnACO1::GUS and pMnACO2::GUS transgenetic plants had different activities in different treatments. The GUS activities of the pMnACO1::GUS transgenetic plants were weakened, while those of the pMnACO2::GUS transgenetic plants were strengthened with the elongation of stress treatment time. Detection of MaACO expression in stress treatment of 2-week-old seedlings by qRT-PCRindicated that the trends of expression pattern of MaACO and its GUS activity changes were almost the same. This research indicated that MnACO is inducible promoter, MnACO1 has the characteristic of constitutive promoter, and MnACO2 has the characteristic of tissue-specific promoter. MnACO1 had more ability to respond to stresses in the transgenic plant, indicating it can be used to regulate the target gene of improving mulberry stress resistance. MaACO2 might be relevant to fruit maturation, thus its promoter could be used as fruit-specific promoter to improve the quality of mulberry fruit.

Key words: Mulberry, Ethylene, ACO, Promoter, GUS, Functional Analysis

[1] Bleecker A B, Kende H. Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol, 2000, 16: 1–18 [2] Lin Z F, Zhong S L, Grierson D. Recent advances in ethylene research. J Exp Bot, 2009, 60: 3311–3336 [3] Johnson, P R., Ecker J R. The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet, 1998, 32: 227–254 [4] Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll1 A. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci, 2013, 4: 10.3389/fpls.2013.00063 [5] Mattoo, A K, Achilea, O, Fuchs Y, Chalutz E. Membrane association and some characteristics of the ethylene forming enzyme from etiolated pea seedlings. Biochem Biophys Res Commun, 1982, 105: 271–278 [6] Mcgarvey D J, Christoffersen R E. Characterization and kinetic parameters of ethylene-forming enzyme from avocado fruit. J Biol Chem, 1992, 267: 5964–5967 [7] Slater A, Maunders M J, Edwards K, Schuch W, Grierson D. Isolation and characterization of cDNA clones for tomato polygalacturonase and other ripening-related proteins. Plant Mol Biol, 1985, 5: 137–147 [8] Kahana A, Silberstein L, Kessler N, Goldstein R S, Perl-Treves R. Expression of ACC oxidase genes differs among sex genotypes and sex phases in cucumber. Plant Mol Biol, 1999, 41: 517–528 [9] Ruperti B, Bonghi C, Rasori A, Ramina A, Tonutti P. Characterization and expression of two members of the peach 1-aminocyclopropane-1-carboxylate oxidase gene family. Physiol Plant, 2001, 111: 336–344 [10] Ross G S, Knighton M L, Lay-Yee M. An ethylene-related cDNA from ripening apples. Plant Mol Biol, 1992, 19: 231–238 [11] Binnie I E, McManus M T. Characterization of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase multigene family of Malus domestica Borkh. Phytochemistry, 2009, 70: 348–60 [12] Shiomi S, Yamamoto M, Nakamura R, Inaba A. Expression of ACC synthase and ACC oxidase genes in melons harvested at different stages of maturity. J Jpn Soc Hort Sci, 1999, 68: 10–17 [13] Barry C S, Blume B, Bouzayen M. Cooper W, Hamilton A J, Grierson D. Differential expression of the 1-aminocyclopropane-1-carboxylic acid oxidase gene family of tomato. Plant J, 1996, 9: 525–535 [14] 朱玉贤. 现代分子生物学. 北京: 高等教育出版社, 2007. pp 75–83 Zhu Y X. Modern Molecular Biology. Beijing: Higher Education Press, 2007, pp 75–83 (in Chinese) [15] Lasserre E, Godard F, Bouquin T, Hernandez J A, Pech J C, Roby D, Balague C. Differential activation of two ACC oxidase gene promoters from melon during plant development and in response to pathogen attack. Mol General Genet, 1997, 256: 211–222 [16] Blume B, Grierson D. Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli. Plant J, 1997, 12: 731–746 [17] Rasoria A, Bertolasib B, Furini A, Bonghi C, Tonutti P, Ramina A. Functional analysis of peach ACC oxidase promoters in transgenic tomato and in ripening peach fruit. Plant Scie, 2003, 165: 523–530 [18] 毛娟, 陆璐, 陈佰鸿, 禇明宇, 赵长增. 甜瓜CmACOI启动子组织特异性表达研究. 园艺学报, 2013, 40: 1101–1109 Mao J, Lu L, Chen B H, Chu M Y, Zhao C Z. Studies on tissue specific regulation of CmACOI promoter in melon. Acta Hort Sin, 2013, 40: 1101–1109 (in Chinese with English abstract) [19] Checker V G, Khurana P. Molecular and functional characterization of mulberry EST encoding remorin (MiREM) involved in abiotic stress. Plant Cell Reports, 2013, 32(11): 1729-1741 [20] Liu C Y, Lü R H, Zhao A C, Wang X L, Diane U, Wang X H, Wang C H, Yu Y S, Han S M, Lu C, Yu M D. Characterization and expression profiles of MaACS and MaACO genes from mulberry (Morus alba L.). J Zhejiang Univ-Sci B, 2014, 15: 611–623 [21] Liu C Y, Zhao A C, Zhu P P, Li J, Han L, Wang X L, Fan W, Lü R H, Wang C H, Li Z G, Lu C, Yu M D. Characterization and expression of genes involved in the ethylene biosynthesis and signal transduction during ripening of mulberry fruit. PLoS One, 2015, 10: e0122081 [22] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 6: 735–743 [23] Zheng L, Liu G, Meng X, Li, Y B, Wang, Y C. A versatile agrobacterium mediated transient gene expression system for herbaceous plants and trees. Biochem Genet, 2012, 50: 761–769 [24] Youk E S, Pack I S, Kim Y J, Yoon W K, Kim C G, Ryu S B, Harn C H, Jeong S C, Kim H M. A framework for molecular genetic assessment of a transgenic watermelon rootstock line. Plant Sci, 2009, 176: 805–811 [25] 雷建峰, 李月, 徐新霞, 阿尔祖古丽?塔什, 蒲艳, 张巨松, 刘晓东. 棉花不同GbU6启动子截短克隆及功能鉴定. 作物学报, 2016, 42: 675–683 Lei J F, Li Y, Xu X X, A E Z G L ?Tashi. Cloning and functional analysis of different truncated GbU6 Promoters in Cotton. Acta Agron Sin, 2016, 42: 675–683 (in Chinese with English abstract) [26] 李军, 赵爱春, 王茜龄, 张琼予, 黎其友, 金筱耘, 李镇刚, 余茂德. 三个桑树肌动蛋白基因的克隆与组织表达分析. 作物学报, 2011, 37: 641–649 Li J, Zhao A C, Wang X L, Zhang Q Y, Li Q Y, Jin X Y, Li Z G, Yu M D. Molecular cloning and tissues expression analysis of three actin genes from mulberry (Morus alba). Acta Agron Sin, 2011, 37: 641–649 (in Chinese with English abstract) [27] 吴建, 侯和胜. 高等植物ACC氧化酶基因启动子研究进展. 天津农业科学, 2014, 20(4): 14–16 Wu J, Hou H S. Advances in research of higher plant ACC oxidase promoters. Tianjin Agric Sci, 2014, 20(4): 14–16 (in Chinese with English abstract) [28] Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol Plant Mol Biol, 1984, 35: 155–189 [29] Carrera E , Holman T, Medhurst A, Dietrich D, Footitt S, Theodoulou F L, Holdsworth M J. Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant J, 2008, 53: 214–224 [30] Linkies A, Leubner-Metzger G. Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep, 2012, 31: 253–270 [31] Hermann K, Meinhard J, Dobrev P, Linkies A, Pesek B, Hess B, Machacova I, Fischer U, Leubner-Metzger G. 1-aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. J Exp Bot, 2007, 58: 3047–3060 [32] Mou W S, Li D D, Bu J W, Jiang Y Y, Khan Z U, Luo Z S, Mao L C, Ying T J. Comprehensive analysis of ABA effects on ethylene biosynthesis and signaling during tomato Fruit ripening. PloS one, 2016, 11: e0154072 [33] Li N, Parsons B L, Liu D R, Mattoo A K. Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines. Plant Mol Biol, 1992, 18: 477–487 [34] Fan X T, Mattheis J P, Fellman J K.Inhibition of apple fruit 1-aminocyclopropane-1-carboxylic activity and respiration by acetylsalicylic acid. J Plant Physiol, 1996, 149: 469–471 [35] Leslie C A, Romani R J. Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiol, 1998, 88: 833–368 [36] Nissen p. Stimulation of somatic embryogenesis in carrot by ethylene effects of modulators of ethylene biosynthesis and action. Physiol Plant, 1994, 92: 397–403 [37] Lasserre E, Bouquin T, Hernandez J A, Bull J, Pech J C, Balague C. Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L.). Mol General Genet, 1996, 251: 81–90 [38] 徐忠传. 成熟猕猴桃果实不同组织中ACC氧化酶基因的表达差异研究. 中国科学技术大学学报, 2001, 31: 235–240 Xu Z C. Study on the differences for the expression of 1-aminocyclopropane-1-carboxylic acid oxidase in different tissues of ripening kiwifruit. J China Univ Sci Technol, 200l, 31: 235–240 (in Chinese with English abstract) [39] Hunter D A, Yoo S D, Butcher S M, McManus M T. Expression of l-aminocyclopropane-1-carboxylate oxidase during leaf ontogeny in white clover. Plant Physi1, 1999, 120: 131–141

[1] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[2] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[3] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[4] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[5] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[6] 王小纯, 王露露, 张志勇, 秦步坛, 于美琴, 韦一昊, 马新明. 小麦谷氨酰胺合成酶同工酶转录特点及其启动子序列分析[J]. 作物学报, 2021, 47(4): 761-769.
[7] 杨阳, 李淮琳, 胡利民, 范楚川, 周永明. 白菜型油菜srb多室性状的遗传分析与分子鉴定[J]. 作物学报, 2021, 47(3): 385-393.
[8] 李兰兰, 母丹, 严雪, 杨陆可, 林文雄, 方长旬. OsPAL2;3对水稻化感抑制稗草能力的调控作用[J]. 作物学报, 2021, 47(2): 197-209.
[9] 王珍, 张晓莉, 孟晓静, 姚梦楠, 缪文杰, 袁大双, 朱冬鸣, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜丝裂原活化蛋白激酶7基因(BnMAPK7)上游调控因子的鉴定[J]. 作物学报, 2021, 47(12): 2379-2393.
[10] 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127.
[11] 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638.
[12] 晁毛妮,胡海燕,王润豪,陈煜,付丽娜,刘庆庆,王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析[J]. 作物学报, 2020, 46(01): 40-51.
[13] 常建忠,董春林,张正,乔麟轶,杨睿,蒋丹,张彦琴,杨丽莉,吴佳洁,景蕊莲. 小麦抗逆相关基因TaSAP1的5′非翻译区内含子功能分析[J]. 作物学报, 2019, 45(9): 1311-1318.
[14] 宋松泉,刘军,徐恒恒,张琪,黄荟,伍贤进. 乙烯的生物合成与信号及其对种子萌发和休眠的调控[J]. 作物学报, 2019, 45(7): 969-981.
[15] 张晓红,胡根海,王寒涛,王聪聪,魏恒玲,付远志,喻树迅. 棉花中GhTFL1aGhTFL1c基因的表达及启动子分析[J]. 作物学报, 2019, 45(3): 469-476.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!