欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (09): 1280-1289.doi: 10.3724/SP.J.1006.2017.01280

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜茎秆菌核病抗性与木质素及其单体比例的相关性分析及QTL定位

陈雪萍**,荆凌云**,王嘉,荐红举,梅家琴,徐新福,李加纳,刘列钊*   

  1. 西南大学农学与生物科技学院 / 重庆市油菜工程技术研究中心,重庆 400715
  • 收稿日期:2017-01-07 修回日期:2017-04-20 出版日期:2017-09-12 网络出版日期:2017-05-08
  • 通讯作者: 刘列钊, E-mail: liezhao2003@126.com, Tel: 023-68251383
  • 基金资助:

    本研究由国家自然科学基金项目(31371655)和重庆市科委(cstc2016shmszx80083)项目资助。

Correlation Analysis of Sclerotinia Resistance with Lignin Content and Monomer G/S and its QTL Mapping in Brassica napus L.

CHEN Xue-Ping**,JING Ling-Yun**,WANG Jia,JIAN Hong-Ju,MEI Jia-Qin,XU Xin-Fu,LI Jia-Na,LIU Lie-Zhao*   

  1. College of Agronomy and Biotechnology, Southwest University / Chongqing Engineering Research Center for Rapeseed, Chongqing, 400715, China
  • Received:2017-01-07 Revised:2017-04-20 Published:2017-09-12 Published online:2017-05-08
  • Contact: 刘列钊, E-mail: liezhao2003@126.com, Tel: 023-68251383
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31371655) and the Science and Technology Committee of Chongqing (cstc2016shmszx80083).

摘要:

菌核病是一类非专一性的植物真菌病原菌,寄主范围广泛,严重危害农作物的生产。对高世代重组自交系群体(RIL)及F2群体终花期茎秆进行菌核病抗性接种鉴定,根据构建的近红外模型对接种鉴定的茎秆木质素含量、单体组分比例进行测定,并进行相关性分析和QTL定位。结果表明在2013年和2014年RIL群体茎秆菌斑大小与木质素含量呈极显著负相关,相关系数分别为–0.348和–0.286,与单体G/S呈显著正相关,相关系数分别为0.198和0.167。2014年F2群体菌斑大小与木质素含量呈极显著负相关,相关系数为–0.306,与单体G/S相关性为0.142。F2:3家系抗(感)植株茎部切片间苯三酚染色观察表明抗性较强的材料木质素含量高于抗性较弱的材料。根据已构建的重组自交系高密度SNP遗传图谱,利用复合区间作图法对上述性状进行QTL分析,共检测到18个QTL,其中9个菌核病抗性相关QTL分布于A05、A06、C04和C06染色体,单个QTL可解释的表型变异为2.38%~12.05%;3个木质素含量QTL分别位于A04、A05和C01染色体,单个QTL可解释表型变异的2.03%~13.75%。6个木质素单体G/S QTL分布于A08、C03和C07染色体,单个QTL可解释表型变异的2.06%~8.66%。本文研究结果为油菜菌核病抗性育种提供了新的思路和理论基础。

关键词: 甘蓝型油菜, 菌核病, 相关性分析, 数量性状位点, 木质素, 单体G/S

Abstract:

Sclerotinia sclerotiorum is a fungal pathogen causing disease in a wide range of plants, resulting in serious damage in crop production. The detached stem inoculation assay of RIL and F2 populations at final flowering stage was conducted, near infrared (NIR) spectroscopy was used to measure lignin content and monomer G/S in the stem, and correlation analysis and QTL mapping for these traits were performed. The lesion size of the RIL had a significantly negative correlation with lignin content, with a correlation coefficient at –0.348 and –0.286 in 2013 and 2014, respectively. The monomer G/S was significantly correlated with lesion size in the RIL population, and the correlation coefficient at 0.198 and 0.167 in 2013 and 2014, respectively. The lesion size of F2 in 2014 was significantly and negatively correlated with lignin content in the stem, with a correlation coefficient at –0.306. The cross sections of resistant and susceptible plants from F2:3 family were stained with phloroglucinol-HCl, showing that the content of lignin was significantly lower in the less resistant materials than in more resistant plants. According to the high density SNP genetic maps and composite interval mapping, a total of 18 QTLs were identified, which were located on A04, A05, A06, A08, C01, C03, C04, C06, and C07 chromosomes, with the explained phenotypic variation by individual QTL ranging from 2.38% to 12.05% for nine QTLs of lesion size, from 2.03% to 13.75% for three QTLs of lignin content, and from 2.06% to 8.66% for six QTLs of monomer G/S. The research results provide some new insights for the Sclerotinia resistance breeding in B. napus.

Key words: Brassica napus, Sclerotinia sclerotiorum, Correlation, QTL, Lignin, Monomer G/S

[1]Carr R A, McDonald B E. Rapeseed in a changing world: Processing and utilization. GCIRC Eighth International Rapeseed Congress. Saskatoon, 1991. pp 39–56
[2]李加纳, 谌利, 张学昆. 甘蓝型黄籽油菜的研究与思考. 北京: 中国农业科技出版社, 2004. pp 29–39
Li J N, Chen L, Zhang X K. Research and thinking of yellow-seeded rapeseed (Brassica napus L.). Beijing: China Science and Technology Press, 2004. pp 29–39 (in Chinese)
[3]Zhao J, Meng J. Genetic analysis of loci associated with partial resistance to Sclerotina sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet, 2003, 106: 759–764
[4]Garg H, Sivasithamparam K, Banga S. Cotyledon assay as a rapid and reliable method of screening for resistance against Sclerotinia sclerotiorum in Brassica napus genotypes. Australas Plant Path, 2008, 37: 106–111
[5]Bradley C, Hamey H. Canola disease situation in North Dakota, USA, 1993–2004. 14th Australian Research Assembly on Brassicas. Port Lincoln, 2005. pp 33–34
[6]Turkington T K, Morrall R A A. Use of petal infestation to forecast Sclerotinia stem rot of canola: the influence of inoculum variation over the flowering period and canopy density. Phytopathology, 1993, 83: 682–689
[7]Del Río L E, Bradley C A, Henson R A, Endres G J, Hanson B K, McKay K, Halvorson M, Porter P M, Le Gare D G, Lamey H A. Impact of Sclerotinia stem rot on yield of canola. Plant Dis, 2007, 91: 191–194
[8]王汉中, 刘贵华, 郑元本, 王新发, 杨庆. 抗菌核病双低油菜新品种中双9号选育及其重要防御酶活性变化规律的研究. 中国农业科学, 2004, 37: 23–23
Wang H Z, Liu G H, Zheng Y B, Wang X F, Yang Q. Breeding of the Brassica napus cultivar zhongshuang 9 with high-resistance to Sclerotinia sclerotiorum and dynamics of its important defense enzyme activity. Sci Agric Sin, 2004, 37: 23–23 (in Chinese with English abstract)
[9]Zhao J, Udall J A, Quijada P A, Grau C R, Meng J, Osborn T C. Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theor Appl Genet, 2006, 112: 509–516.
[10]Wu J, Cai G, Tu J, Li L, Liu S, Luo X, Zhou L, Fan C, Zhou Y. Identification of QTLs for resistance to Sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PloS One, 2013, 8: e67740
[11]周李鹏. 甘蓝型油菜抗菌核病QTL定位. 华中农业大学硕士学位论文, 湖北武汉, 2014. pp 20–21
Zhou L P. QTL mapping for Resistance to Sclerotinia Stem rot in Brassica napus. PhD Dissertation of Huazhong Agricultural University, Wuhan, China, 2014. pp 20–21 (in Chinese with English abstract)
[12]梅家琴. 甘蓝与甘蓝型油菜C亚基因组遗传关系调查及甘蓝抗菌核病QTL定位. 西南大学博士学位论文, 重庆, 2011. pp 62–73
Mei J Q. Genetic investigation of relationships between Brassica oleracea and C subgenome of B. napus and mapping QTL for Sclerotinia sclerotiorum resistance in B. oleracea. PhD Dissertation of Southwest University, Chongqing, China, 2011. pp 62–73 (in Chinese with English abstract)
[13]Wei L, Jian H, Lu K, Filardo F, Yin N, Liu L, Qu C, Wei L, Du H, Li J. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnol J, 2015, 14: 1368–1380
[14]Wu J, Zhao Q, Yang Q, Liu H, Li Q, Yi X, Cheng Y, Guo L, Fan C, Zhou Y. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Sci Rep, 2016, 6: 19007
[15]Hoffman D D, Diers B W, Hartman G L, Nickell C D, Nelson R L, Pedersen W L, Cober E R, Graef G L, Steadman J R, Grau C R, Nelson B D, del Rio L E, Helms T, Anderson T, Poysa V, Rajcan I, Stienstra W C. Selected soybean plant introductions with partial resistance to Sclerotinia sclerotiorum. Plant Dis, 2002, 86: 971–980
[16]Kim H S, Diers B W. Inheritance of partial resistance to Sclerotinia stem rot in soybean. Crop Sci, 2000, 40: 55–61
[17]余叔文, 汤章城. 植物生理与分子生物学. 北京: 科学出版社, 2002. pp 770–781
Yu S W, Tang Z C. Plant Physiology and Molecular Biology. Beijing: Science Press, 2002. pp 770–781 (in Chinese)
[18]Boudet A M, Lapierre C, Grima-Pettenati J. Biochemistry and molecular biology of lignification. New Phytologist, 1995, 129: 203–236
[19]Nicholson R L, Hammerschmidt R. Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol, 1992, 30: 369–389
[20]Vance C P, Kirk T K, Sherwood R T. Lignification as a mechanism of disease resistance. Annu Rev Phytopathol, 1980, 18: 259–288
[21]Dushnicky L G, Ballance G M, Sumner M J, MacGregor A W. The role of lignification as a resistance mechanism in wheat to a toxin-producing isolate of Pyrenophora tritici-repentis. Can J Plant Pathol, 1998, 20: 35–47
[22]Hammerschmidt R, Ku? J. Lignification as a mechanism for induced systemic resistance in cucumber. Physiol Plant Pathol, 1982, 20: 61–71
[23]Southerton S G, Deverall B J. Histochemical and chemical evidence for lignin accumulation during the expression of resistance to leaf rust fungi in wheat. Physiol Mol Plant P, 1990, 36: 483–494
[24]杨向东. 木质素合成调控及其与甘蓝型油菜抗菌核病和抗倒伏性关系研究. 华中农业大学博士学位论文, 湖北武汉, 2006. pp 28–30
Yang X D. The Study on Relationship between Lignin Biosynthesis Manipulation and Brassica napus’ Resistance to Sclerotinia sclerotiorum and Lodging. PhD Dissertation of Huazhong Agricultural University, Wuhan, China, 2006. pp 28–30 (in Chinese with English abstract)
[25]Gayoso C, Pomar F, Novo-Uzal E, Merino F, de Ilárduya ó M. The Ve-mediated resistance of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. BMC Plant Biol, 2010, 10: 1
[26]Hammerschmidt R, Bonnen A M, Bergstrom G C, Baker K K. Association of epidermal lignification with nonhost resistance of cucurbits to fungi. Can J Bot, 1985, 63: 2393–2398
[27]Pomar F, Novo M, Bernal M A, Merino F, Barceló A R. Changes in stem lignins (monomer composition and crosslinking) and peroxidase are related with the maintenance of leaf photosynthetic integrity during Verticillium wilt in Capsicum annuum. New Phytol, 2004, 163: 111–123
[28]Barceló A R. Lignification in plant cell walls. Int Rev Cytol, 1997, 176: 87–132
[29]Snowdon R J, Wittkop B, Rezaidad A, Hasan M, Lipsa F, Stein A, Friedt W. Regional association analysis delineates a sequenced chromosome region influencing antinutritive seed meal compounds in oilseed rape. Genome, 2010, 53: 917–928
[30]Liu L, Stein A, Wittkop B, Sarvari P, Li J, Yan X, Dreyer F, Frauen M, Friedt W, Snowdon R J. A kockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in Brassica napus seeds. Theor Appl Genet, 2012, 124: 1573–1586
[31]曲存民, 付福友, 卢坤, 谢景梅, 刘晓兰, 黄杰恒, 李波, 王瑞, 谌利, 唐章林, 李加纳. 不同环境中甘蓝型油菜种皮木质素含量的QTL定位. 作物学报, 2011, 37: 1398–1405
Qu C M, Fu F Y, Lu K, Xie J M, Huang J H, Li B, Wang R, Chen L, Tang Z L, Li J N. Identification of QTLs for lignin content of seed coat in Brassica napus L. in different environments. Acta Agron Sin, 2011, 37: 1398–1405 (in Chinese with English abstract)
[32]Liu L Z, Qu C M, Wittkop B, Yi B, Xiao Y, He H Y, Snowdon R, Li J. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PloS One, 2013, 8: e83052
[33]Chen F, Dixon R A. Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol, 2007, 25: 759–761
[34]黄杰恒. 干旱胁迫下油菜抗倒伏相关性状动态变化及木质素关键基因表达特性分析. 西南大学博士学位论文, 重庆, 2013. pp 42–43
Huang J H. Lodging resistant traits and lignin related gene analysis in B. napus under drought stress. PhD Dissertation of Southwest University, Chongqing, China, 2013. pp 42–43 (in Chinese with English abstract)
[35]Eynck C, Séguin-Swartz G, Clarke W E, Parkin I A. Monolignol biosynthesis is associated with resistance to Sclerotinia sclerotiorum in Camelina sativa. Mol Plant Pathol, 2012, 13: 887–899
[36]Mccouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14
[37]Li J, Zhao Z, Hayward A, Cheng H, Fu D. Integration analysis of quantitative trait loci for resistance to Sclerotinia sclerotiorum in Brassica napus. Euphytica, 2015, 205: 483–489
[38]Behla R S, Fernando W G D, Li G. Identification of quantitative trait loci for resistance against Sclerotinia stem rot in Brassica napus. Can J Plant Pathol, 2009, 31: 477–478
[39]Yin X R, Yi B, Chen W, Zhang W J, Tu J X, Fernando W G D, Fu T D. Mapping of QTLs detected in a Brassica napus DH population for resistance to Sclerotinia sclerotiorum in multiple environments. Euphytica, 2010, 173: 25–35
[40]Wei D, Mei J, Fu Y, Disi J O, Li J, Qian W. Quantitative trait loci analyses for resistance to Sclerotinia sclerotiorum and flowering time in Brassica napus. Mol Breed, 2014, 34: 1797–1804
[41]Tuberosa R, Salvi S, Sanguineti M C, Landi P, Maecaferri M, Conti S. Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot, 2002, 89: 941–963

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[4] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[7] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[8] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[9] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[10] 王吴彬, 童飞, KHAN Mueen Alam, 张雅轩, 贺建波, 郝晓帅, 邢光南, 赵团结, 盖钧镒. 大豆根部水压胁迫耐逆指数遗传体系解析[J]. 作物学报, 2021, 47(5): 847-859.
[11] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[12] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[13] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[14] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[15] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!