欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (11): 1677-1688.doi: 10.3724/SP.J.1006.2017.01677

• 耕作栽培·生理生化 • 上一篇    下一篇

外源水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下水稻产量的影响

沙汉景,胡文成,贾琰,王新鹏,田雪飞,于美芳,赵宏伟*   

  1. 东北农业大学水稻研究所,黑龙江哈尔滨 150030
  • 收稿日期:2017-02-16 修回日期:2017-07-23 出版日期:2017-11-12 网络出版日期:2017-08-01
  • 通讯作者: 赵宏伟,E-mail:hongweizhao_cool@126.com, Tel: 0451-55190292
  • 基金资助:

    本研究由国家重点研发计划项目(2016YFD0300104)和黑龙江省重大科技招标项目(GA14B102-02)资助。

Effect of Exogenous Salicylic Acid, Proline and γ-Aminobutyric Acid on Yield of Rice under Salt Stress

SHA Han-Jing, HU Wen-Cheng, JIA Yan, WANG Xin-Peng, TIAN Xue-Fei, YU Mei-Fang, and ZHAO Hong-Wei*   

  1. Rice Research Institute, Northeast Agricultural University, Harbin 150030, China
  • Received:2017-02-16 Revised:2017-07-23 Published:2017-11-12 Published online:2017-08-01
  • Contact: 赵宏伟,E-mail:hongweizhao_cool@126.com, Tel: 0451-55190292
  • Supported by:

    This study was supported by the funding from National Key R&D Program (2016YFD0300104), Science and Technology Tender Program of Heilongjiang Province (GA14B102).

摘要:

水杨酸(SA)、脯氨酸(Pro)和γ-氨基丁酸(GABA)在植物生长发育以及抵御逆境胁迫中起重要作用。为了研究三者复配对盐胁迫下水稻产量是否具有协同增效作用,本文采用三元二次通用旋转组合设计,建立了SA、Pro和GABA复配剂与盐胁迫下水稻产量之间的数学模型,通过频数分析获得SA、Pro与GABA复配优化组合方案。结果表明,二次模型拟合较好,对盐胁迫下水稻产量的影响程度为SA>GABA>Pro,SA与GABA,Pro与GABA之间交互作用对盐胁迫下水稻产量有显著影响。模拟寻优获得提高盐胁迫下水稻产量10%以上的最佳复配组合为SA0.44~0.51 mmol L-1、Pro27.63~31.20 mmol L-1、GABA3.55~4.28 mmol L-1。外源SA、Pro与GABA单剂和复配剂对盐敏感品种牡丹江30的调控作用大于耐盐品种龙稻5。SA或Pro与GABA复配对盐胁迫下水稻产量的影响具有协同作用,而SA与Pro复配效果与品种耐盐性差异有关。SA、Pro和GABA三者复配效果优于两两复配,任意单剂与其他2种外源物质复配对水稻产量的影响均存在协同作用。

关键词: 二次通用旋转组合设计, 协同作用, 盐胁迫, 水稻, 产量

Abstract:

Salicylic acid (SA), proline (Pro) and γ-aminobutyric acid (GABA) play important roles in plant growth and development and tolerating stress. In order to investigate whether the combination of SA, Pro, and GABA had synergistic effect on the yield of rice under salt stress, the mathematical models were established by means of quadratic general rotary unitized design. The optimal combination of SA, Pro, and GABA was obtained by frequency analysis. The results demonstrated that the quadratic models fit better. The effects on the yield of rice under salt stress were SA>GABA>Pro. The interactions between SA and GABA, and between Pro and GABA showed significant effects on rice yield under salt stress.The recommended optimal combination is 0.44-0.51mmol L-1 for SA, 27.63-31.20mmol L-1 for Pro and 3.55-4.28mmol L-1for GABA, which can improve the rice yield more than 10% under salt stress. The effect of a single or a combinationof SA, Pro and GABA on the yield of salt-sensitive variety MDJ30 was larger than that of salt-tolerant variety LD5. The combination of SA and GABA, or Pro and GABA showed synergistic effect on the yield of rice under salt stress, while the combination effect of SA and Pro was related to the genotype difference in salt tolerance. The joint application of SA, Pro and GABA showed better effect on the yield of rice under salt stress than that of any two of them. The combination between any single agent and theother two agentsshowed synergistic effect.

Key words: Quadratic general rotary unitized design, Synergistic effects, Salt stress, Rice, Yield

[1]Koca H, Bor M, Özdemir F, Türkan ?.The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars.Environ Exp Bot, 2007, 60:344–351
[2]Negrão S, Courtois B, Ahmadi N, Abreu I, Saibo N, Oliveira MM.Recent updates on salinity stress in rice: from physiological to molecular responses.Crit Rev Plant Sci, 2011, 30:329–377
[3]杨劲松. 中国盐渍土研究的发展历程与展望. 土壤学报, 2008, 45:837–845
Yang J S.Development and prospect of the research onsalt-affected soils in china.ActaPedol Sin, 2008, 45:837–845(in Chinese with English abstract)
[4]Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol, 2007, 63:609–623
[5]祁栋灵, 韩龙植, 张三元.水稻耐盐/碱性鉴定评价方法. 植物遗传资源学报, 2005, 6:226–230
Qi D L, Han L Z, Zhang S Y. Methods of characterization and evaluation of salt oralkaline tolerance in rice. J Plant Genet Resour, 2005, 6:226–230(in Chinese with English abstract)
[6]Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul, 2015, 76:25–40
[7]Janda M, Ruelland E. Magical mystery tour: Salicylic acid signalling. Environ Exp Bot, 2015, 114:117–128
[8]Kang G, Li G, Guo T. Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants. Acta Physiol Plant, 2014, 36:2287–2297
[9]Horváth E, Szalai G, Janda T. Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul, 2007, 26:290–300
[10]Ashraf M, Akram NA, Arteca RN, Foolad MR. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci, 2010, 29:162–190
[11]Hayat Q, Hayat S, Irfan M, Ahmad A. Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot, 2010, 68:14–25
[12]Arfan M, Athar HR, Ashraf M. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol, 2007, 164:685–694
[13]Pirasteh-Anosheh H, Emam Y, Rousta M J, Ashraf M. Salicylic acid induced salinity tolerance through manipulation of ion distribution rather than ion accumulation. J Plant Growth Regul, 2017, 36: 227–239
[14]沙汉景.外源脯氨酸对盐胁迫下水稻耐盐性的影响. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2013
Sha H J. Effect of Exogenous Proline on the Salt-tolerance of Rice (Oryza Sativa L.). MS Thesis of Northeast Agricultural University, Harbin, China, 2013 (in Chinese with English abstract)
[15]Bhusan D, Das DK, Hossain M, Murata Y, Hoque MA. Improvement of salt tolerance in rice (Oryza sativa L.) by increasing antioxidant defense systems using exogenous application of proline. Aust J Crop Sci, 2016, 10:50–56
[16] El Habbasha S F, Mekki B B. Amelioration of the growth, yield and chemical constituents of canola plants grown under salinity stress condition by exogenous application of proline. Int J Adv Res, 2013, 2:501–508
[17]周翔.盐胁迫诱导玉米幼苗GABA积累的生理作用. 中国农业大学硕士学位论文, 北京, 2004
Zhou X. The Physiological Role of salt Stress-induced GABA Accumulation inZea Mays. MS Thesis of China Agricultural University, Beijing, China, 2004 (in Chinese with English abstract)
[18]高洪波, 章铁军, 吕桂云, 吴晓蕾, 周志男. NaCl胁迫下外源γ-氨基丁酸对黄瓜幼苗生长和活性氧代谢的影响. 西北植物学报,2007, 27:2046–2051
Gao H B, Zhang T J, Lv G Y,Wu X L, Zhou Z N. Effects of exogenous γ-aminobutyric acid on growth and reactive oxygen species metabolism of cucumber seedlings under NaCl Stress. Acta Bot Boreali-Occident Sin, 2007, 27:2046–2051(in Chinese with English abstract)
[19]徐中儒.回归分析与试验设计. 北京:中国农业出版社, 1998.pp124–161
Xu Z R. Regression Analysis and Experimental Design. Beijing: China Agriculture Press, 1998. pp 124–161(in Chinese)
[20]Maas EV, Grattan SR. Crop yields as affected by salinity. In: van Schilfgaarde J,Skaggs R W, eds.Agricultural Drainage, Madison, WI: ASA, CSSA, SSA, 1999. pp 55–108
[21]Grattan SR, Zeng L, Shannon MC, Roberts SR. Rice is more sensitive to salinity than previously thought. Calif Agric, 2002, 56(6):189–198
[22]Esan AM, Olaiya CO. Effect of salicylic acid (SA) seeds soaking on the NaCl salt stress induced changes in soluble sugar and protein accumulation in organs of two genotypes of okra plants. Afr JPlant Sci, 2016, 10(6):105–110
[23] Farhangi-Abriz S, Ghassemi-Golezani K. Improving amino acid composition of soybean under salt stress by salicylic acid and jasmonic acid. J Appl Bot Food Qual, 2016, 89:243–248
[24] Qados AMSA. Effects of salicylic acid on growth, yield and chemical contents of pepper (Capsicum Annuum L) plants grown under salt stress conditions. Int J Agric Crop Sci, 2015, 8:107–113
[25] Agami RA. Applications of ascorbic acid or proline increase resistance to salt stress in barley seedlings. BiolPlant, 2014, 58:341–347
[26] Teh CY, Shaharuddin NA, Ho CL, Mahmood M. Exogenous proline significantly affects the plant growth and nitrogen assimilation enzymes activities in rice (Oryza sativa) under salt stress. Acta Physiol Plant, 2016, 38(6):1–10
[27] Wutipraditkul N, Wongwean P, Buaboocha T. Alleviation of salt-induced oxidative stress in rice seedlings by proline and/or glycinebetaine. Biol Plant, 2015, 59:547–553
[28] Ziogas V, Tanou G, Belghazi M, Diamantidis G, Molassiotis A. Characterization of β-amino- and γ-amino butyric acid-induced citrus seeds germination under salinity using nanoLC-MS/MS analysis. Plant Cell Rep, 2017, 36: 787–789
[29] Xiang L, Hu L, Xu W, Zhen A, Zhang L, Hu X. Exogenous γ-aminobutyric acid improves the structure and function of photosystem II in muskmelon seedlings exposed to salinity-alkalinity stress. PLoS One, 2016, 11(10):e0164847
[30] Nazar R, Iqbal N, Syeed S, Khan N A. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol, 2011, 168(8):807–815
[31] Wani A S, Ahmad A, Hayat S, Tahir I. Is foliar spray of proline sufficient for mitigation of salt stress in Brassica juncea. Environ Sci Pollut Res, 2016, 23(13): 13413–13423
[32] 赵九洲, 胡立盼, 徐志然, 申璐, 胡晓辉. 甜瓜幼苗耐盐碱性及缓解盐碱胁迫γ-氨基丁酸浓度的筛选. 北方园艺, 2014, (9): 1–7
Zhao J Z, Hu LP, Xu Z R, Shen L, Hu X H. The screening of melon (Cucumis melo L.) seedling cultivar for salt-alkaline tolerance and the concentration of γ –aminobutyric acid alleviating salt-alkaline stress. North Hortic, 2014, (9): 1–7(in Chinese with English abstract)
[33] Akhtar J, Ahmad R, Ashraf MY, Tanveer A, Warrich EA, Oraby H. Influence of exogenous application of salicylic acid on saltstressed mungbean (Vigna radiata): growth and nitrogen metabolism. Pak J Bot, 2013, 45:119–125
[34] 马敬坤, 袁永泽, 欧吉权, 欧阳敏, 鲍世颖, 张楚富.外源水杨酸对水稻(Oryza sativa L.)幼苗根的NaCl胁迫缓解效应. 武汉大学学报(理学版),2006, 52(4):471–474
Ma J K, Yuan Y Z, Ou J Q, Ouyang M, Bao S Y, Zhang C F. Relieving effect of exogenous salicylic acid on rice (Oryza sativa L.) seedling roots under NaCl stress. J Wuhan Univ (Nat Sci Edn), 52(4):471–474(in Chinese with English abstract)
[35] Li Z, Yu J, Peng Y, Huang B. Metabolic pathways regulated by abscisic acid, salicylic acid and gamma-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera). Physiol Plant, 2017, 159: 42–58
[36] Wu L, Hu X, Wang S, Tian L, Pang Y, Han Z, Wu L, Chen Y. Quantitative analysis of changes in the phosphoproteome of maize induced by the plant hormone salicylic acid. Sci Rep-UK, 2015, 5:18155
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[6] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[7] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[10] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[11] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[12] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[13] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[14] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[15] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!