欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (6): 912-921.doi: 10.3724/SP.J.1006.2019.84107

• 耕作栽培·生理生化 • 上一篇    下一篇

磷对花生氮素吸收和利用的影响

于天一1,*,李晓亮2,*,路亚3,孙学武1,郑永美1,吴正锋1,沈浦1,王才斌1,*()   

  1. 1 山东省花生研究所, 山东青岛 266100
    2 烟台市农业科学院, 山东烟台 265500
    3 湖南农业大学农学院, 湖南长沙 410128
  • 收稿日期:2018-08-04 接受日期:2019-01-12 出版日期:2019-06-12 网络出版日期:2019-06-12
  • 通讯作者: 于天一,李晓亮,王才斌
  • 作者简介:E-mail: tianyi_1984@126.com, Tel: 0532-87632130
  • 基金资助:
    本研究由国家自然科学基金项目(31571617, 41501330);山东省农业科学院农业科技创新工程(CXGC2018E21, CXGC2018B05);山东省重点研发计划项目(2016GGH4518)

Effect of phosphorus (P) on nitrogen (N) uptake and utilization in peanut

Tian-Yi YU1,*,Xiao-Liang LI2,*,Ya LU3,Xue-Wu SUN1,Yong-Mei ZHENG1,Zheng-Feng WU1,Pu SHEN1,Cai-Bin WANG1,*()   

  1. 1 Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
    2 Yantai Academy of Agricultural Sciences, Yantai 265500, Shandong, China
    3 College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
  • Received:2018-08-04 Accepted:2019-01-12 Published:2019-06-12 Published online:2019-06-12
  • Contact: Tian-Yi YU,Xiao-Liang LI,Cai-Bin WANG
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31571617, 41501330);the Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2018E21, CXGC2018B05);Shandong Provincial Key Research and Development Program.(2016GGH4518)

摘要:

磷是植物必需营养元素之一, 以多种方式影响作物氮吸收、利用。花生属于豆科作物, 氮素营养来源包括土壤、肥料和根瘤固氮。本研究以山东省主推品种花育22号(大花生)和花育20号(小花生)为材料, 设置5个施磷(P2O5)水平(0、45、90、135和180 kg hm -2), 利用 15N示踪技术, 进行了2年桶栽试验。结果表明, 施磷提高了两花生品种肥料氮、土壤氮及根瘤固氮积累量, 其中根瘤固氮积累量的增幅大于土壤氮和肥料氮, 年份和品种间表现基本一致; 随施磷量增加, 根瘤数量、鲜重及根瘤固氮积累比例呈增加趋势, 土壤氮、肥料氮积累比例呈降低趋势; 施磷量在45~90 kg hm -2范围内, 氮肥利用效率、荚果氮素利用效率及产量均呈增加趋势, 施磷量超过90 kg hm -2, 上述三指标呈降低趋势或不再增加; 磷肥农学效率随施磷量增加而降低; 根瘤固氮积累量与荚果产量、植株全氮积累量呈极显著正相关, 与土壤氮、肥料氮积累比例及氮素荚果利用效率呈极显著负相关。根瘤固氮积累比例与土壤氮和肥料氮积累量、供氮比例及氮肥利用率呈极显著负相关。综上, 施磷能增加花生根瘤固氮供氮量及供氮比例, 降低对肥料氮和土壤氮的依赖, 但过量施磷不利于氮、磷效率和产量的提高。45~90 kg hm -2(P2O5)为花生适宜施磷量。

关键词: 磷肥, 花生, 氮源, 氮吸收, 氮利用

Abstract:

P is one of the essential nutrients to plant and influences N uptake and utilization of crops by various ways. Peanut belongs to leguminous plant, which N nutrition is obtained from soil, fertilizer and nodule N fixation. This study is significant for fully developing the potential of N fixation and reducing dependence on N fertilizer. Two popularized cultivars (big pod cultivar Huayu 22 and small pod cultivar Huayu 20) in Shandong province were chosen and five P (P2O5) application levels (0, 45, 90, 135, and 180 kg ha -1) were applied in a two-year barrel experiment, to investigate the influences of P on uptake and utilization of three N sources for peanut with 15N isotope tracing analysis. The N accumulation amounts from the three N sources in two varieties all increased with increasing P-level. The increment of N accumulation amount from nodule N fixation was larger than that from soil N and fertilizer N. And the change trends for different varieties and years were almost the same. Nodule numbers, fresh weights and percentages of N accumulation amounts form nodule N fixation increased with the increase of P application rate, while the percentages of N accumulation amounts form soil N and fertilizer N declined. In the P range of 45-90 kg ha -1, nitrogen use efficiency (NUE), nitrogen pod production efficiency (NPPE), and pod yield increased with increasing P-level. However, the three parameters decreased or did not increase any more with further more P application. In addition, the agronomic efficiency of P fertilizer decreased with the increase of P application rate. N accumulation amount from nodule N fixation had extremely significant and positive correlation with pod yield and total N accumulation amount of plant, and significantly negative correlation with percentages of N accumulation amounts from soil N and fertilizer N, NUE, and NPPE. And the percentage of N accumulation amount from nodule N fixation had extremely significant and negative correlation with N accumulation amounts and percentages of fertilizer N, soil N and NUE. In conclusion, applying P fertilizer could increase N supplying amount and percentage from nodule N fixation of peanut and reduce dependence on fertilizer N and soil N. However, excess P fertilizer is not benefit for N, P efficiency and pod yield. The suitable P rate for peanut is 45-90 kg ha -1.

Key words: phosphorus fertilizer, peanut, nitrogen resources, nitrogen uptake, nitrogen utilization

表1

不同处理肥料用量"

肥料种类 Fertilizer type P0 P45 P90 P135 P180
磷酸二氢钾 KH2PO4 0 0.98 1.96 2.94 3.92
硫酸钾 K2SO4 3.78 3.15 2.52 1.89 1.26
尿素 CO(NH2)2 1.85 1.85 1.85 1.85 1.85

图1

不同品种及磷水平条件下花生3种氮源氮积累量 标以不同小写字母的柱值于处理间0.05水平上差异显著。NN: 根瘤固氮; SN: 土壤氮; FN: 肥料氮; P0: 施磷量0 kg hm-2; P45: 施磷量45 kg hm-2; P90: 施磷量90 kg hm-2; P135: 施磷量135 kg hm-2; P180: 施磷量180 kg hm-2。"

表2

不同品种及磷水平条件下花生3种氮源氮积累比例"

年份
Year
施磷量
P rate
肥料氮 N from fertilizer 土壤氮 N from soil 根瘤固氮 N fixed by root nodule
花育22号
Huayu 22
花育20号
Huayu 20
花育22号
Huayu 22
花育20号
Huayu 20
花育22号
Huayu 22
花育20号
Huayu 20
2015 0 11.34±0.51 a 17.01±1.77 a 37.19±1.81 a 55.79±3.45 a 51.53±0.42 b 27.21±4.98 b
45 11.17±1.29 a 15.63±1.91 ab 36.49±0.28 ab 51.23±2.88 ab 53.15±1.78 ab 33.14±4.33 ab
90 11.05±1.77 a 15.26±0.75 ab 35.93±0.04 ab 50.05±2.45 ab 53.20±1.25 ab 34.70±3.19 ab
135 10.89±1.21 a 14.96±1.09 ab 35.56±0.01 ab 49.08±3.58 b 53.76±1.11 ab 35.95±4.67 a
180 10.43±0.99 a 14.40±0.56 b 34.18±2.91 b 47.22±1.85 b 55.62±2.75 a 38.39±2.42 a
2016 0 10.23±0.45 a 12.17±1.12 a 33.32±1.51 a 39.89±0.83 a 56.59±2.33 b 48.19±1.89 b
45 9.87±1.21 ab 11.68±2.08 a 32.37±3.95 a 38.31±2.05 a 58.37±2.45 ab 51.03±4.29 ab
90 9.75±0.25 ab 11.32±1.29 a 31.98±0.82 a 37.14±4.24 a 58.27±0.52 ab 51.93±4.34 ab
135 9.52±0.30 ab 11.15±1.51 a 31.21±0.99 a 36.59±4.96 a 59.30±1.84 ab 53.00±1.73 a
180 8.90±0.42 b 11.01±1.58 a 29.19±1.37 a 36.04±0.20 a 61.99±3.10 a 53.30±1.92 a
显著性Significance (F-value)
年份Year (Y) ** ** **
品种Variety (V) ** ** **
施磷量P rate (P) ns ** **
年份×品种 Y×V ** ** **
年份×施磷量Y×P ns ns ns
品种×施磷量V×P ns ns ns

图2

不同品种及磷水平条件下花生根瘤数量 标以不同小写字母的柱值于处理间0.05水平上差异显著。P0: 施磷量0 kg hm-2; P45: 施磷量45 kg hm-2; P90: 施磷量90 kg hm-2; P135: 施磷量135 kg hm-2; P180: 施磷量180 kg hm-2。"

图3

不同品种及磷水平条件下花生根瘤鲜重 标以不同小写字母的柱值于处理间0.05水平上差异显著。P0: 施磷量0 kg hm-2; P45: 施磷量45 kg hm-2; P90: 施磷量90 kg hm-2; P135: 施磷量135 kg hm-2; P180: 施磷量180 kg hm-2。"

表3

不同品种及磷水平条件下氮肥利用率、氮肥荚果利用效率和磷肥农学效率"

年份
Year
施磷量
P rate
氮肥利用率
Nitrogen use efficiency
(%)
氮素荚果利用率
Nitrogen pod production efficiency (kg kg-1)
磷肥农学效率
Agronomic efficiency of phosphorus fertilizer (kg kg-1)
花育22号
Huayu 22
花育20号
Huayu 20
花育22号
Huayu 22
花育20号
Huayu 20
花育22号
Huayu 22
花育20号
Huayu 20
2015 0 30.93±0.83 b 40.81±3.00 a 18.64±0.61 ab 19.06±0.35 a
45 32.54±0.45 ab 42.60±0.16 a 19.08±0.68 a 19.08±0.13 a 8.00±0.85 a 10.51±1.19 a
90 33.17±2.66 ab 43.23±1.24 a 19.02±0.27 a 18.72±0.14 ab 5.57±0.74 b 6.13±0.49 b
135 34.01±2.01 a 43.43±1.84 a 18.56±0.37 ab 18.70±0.23 ab 4.01±0.45 bc 4.53±0.92 bc
180 34.10±0.58 a 41.60±0.94 a 17.77±0.27 b 18.55±0.23 b 3.08±0.61 c 3.19±0.16 c
2016 0 20.18±0.90 b 17.05±0.96 b 19.40±1.33 a 21.34±0.95 a
45 22.61±1.68 a 18.32±1.76 ab 19.60±0.37 a 21.51±0.70 a 7.42±0.68 a 6.73±1.13 a
90 22.83±0.46 a 18.51±1.18 ab 19.00±0.32 a 21.40±0.60 a 5.11±0.67 b 3.36±1.08 b
135 23.34±0.35 a 18.90±1.53 ab 18.36±0.30 ab 21.29±0.18 a 3.72±0.57 bc 3.53±0.42 b
180 22.94±0.67 a 19.93±2.00 a 17.31±0.53 b 19.73±0.59 b 2.61±0.27 c 2.48±0.46 b
显著性 Significance (F-value)
年份Year (Y) ** ** **
品种Variety (V) ** ** ns
施磷量P rate (P) ** ** **
年份×品种 Y×V ** ** ns
年份×施磷量Y×P ns ns ns
品种×施磷量V×P ns ns ns

表4

不同品种及磷水平条件下花生荚果产量和生物产量"

年份
Year
施磷量
P rate
荚果产量 Pod yield 生物产量 Biomass yield
花育22号
Huayu 22
花育20号
Huayu 20
花育22号
Huayu 22
花育20号
Huayu 20
2015 0 43.25±1.62 b 39.09±3.15 b 84.73±2.68 b 72.40±5.37 b
45 47.38±1.72 ab 44.44±3.19 a 92.83±3.55 ab 80.60±6.53 ab
90 48.98±4.45 a 45.34±1.64 a 97.13±6.90 a 81.73±2.71 a
135 49.44±2.35 a 46.00±1.72 a 97.63±5.63 a 83.17±4.87 a
180 49.57±3.23 a 45.59±1.42 a 97.80±4.94 a 83.33±2.42 a
2016 0 32.64±0.78 b 25.46±1.23 b 86.06±5.97 b 57.45±3.59 b
45 36.39±2.50 a 28.89±1.96 a 94.56±9.24 ab 62.14±3.64 ab
90 37.81±0.84 a 29.84±1.35 a 93.74±3.88 ab 65.66±5.48 ab
135 38.29±1.07 a 30.85±2.30 a 103.33±1.37 a 66.49±5.46 ab
180 37.93±1.44 a 30.52±2.72 a 103.51±6.00 a 67.75±2.85 a
年份
Year
施磷量
P rate
荚果产量 Pod yield 生物产量 Biomass yield
花育22号
Huayu 22
花育20号
Huayu 20
花育22号
Huayu 22
花育20号
Huayu 20
显著性Significance (F-value)
年份Year (Y) ** **
品种Variety (V) ** **
施磷量P rate (P) ** **
年份×品种 Y×V ** **
年份×施磷量 Y×P ns ns
品种×施磷量 V×P ns ns

表5

花生产量与氮素积累、利用相关性状的相关系数"

X1 X2 X3 X4 X5 X6 X7 X8 X9
X2 0.988**
X3 0.816** 0.785**
X4 0.815** 0.783** 0.999**
X5 0.641** 0.696** 0.100 0.100
X6 0.236 0.170 0.743** 0.745** -0.583**
X7 0.235 0.170 0.743** 0.745** -0.584** 1.000**
X8 -0.236 -0.170 -0.740** -0.745** 0.583** -1.000** -1.000**
X9 0.818** 0.787** 1.000** 1.000** 0.110 0.740** 0.740** -0.741**
X10 -0.733** -0.825** -0.531** -0.522** -0.712** 0.053 0.054 -0.053 -0.534**
[1] Devi M J, Sinclair T R, Vadez V . Genotypic variability among peanut (Arachis hypogea L.) in sensitivity of nitrogen fixation to soil drying. Plant Soil, 2010,330:139-148.
[2] 王晓云, 李向东, 邹琦 . 施氮对花生叶片多胺代谢及衰老的调控作用. 作物学报, 2001,27:442-446.
Wang X Y, Li X D, Zou Q . Regulation effects of nitrogen application on the polyamine metabolism and senescence of peanut leaves. Acta Agron Sin, 2001,27:442-446 (in Chinese with English abstract).
[3] Zhang H Y, Liu Q J, Yu X X, Lyu G A, Wu Y Z . Effects of plastic mulch duration on nitrogen mineralization and leaching in peanut ( Arachis hypogaea) cultivated land in the Yimeng mountainous area, China. Agric Ecosyst Environ, 2012,158:164-171.
[4] Wang C B, Zheng Y M, Shen P, Zheng Y P, Wu Z F, Sun X U, Yu T Y, Feng H . Determining N supplied sources and N use efficiency for peanut under applications of four forms of N fertilizers labeled by isotope 15N . J Integr Agric, 2016,15:432-439.
doi: 10.1016/S2095-3119(15)61079-6
[5] Divito G A, Sadras V O . How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? a meta-analysis. Field Crops Res, 2014,156:161-171.
doi: 10.1016/j.fcr.2013.11.004
[6] Czarnecki O, Yang J, Weston D J, Tuskan G A, Chen J G . A dual role of strigolactones in phosphate acquisition and utilization in plants. Int J Mol Sci, 2013,14:7681-7701.
[7] Sulieman S, Tran L S . Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus deficiency. Plant Sci, 2015,239:36-43.
doi: 10.1016/j.plantsci.2015.06.018 pmid: 26398789
[8] Vadez V, Beck D P, Lasso J H, Drevon J J . Utilization of the acetylene reduction assay to screen for tolerance of symbiotic N2 fixation to limiting P nutrition in common bean. Physiol Plant, 1997,99:227-232.
doi: 10.1111/j.1399-3054.1997.tb05406.x
[9] Moez J, Mohamed E A, Helene P, Drevon J J . Nodule conductance varied among common bean ( Phaseolus vulgaris) genotypes under phosphorus deficiency. J Plant Physiol, 2005,162:309-315.
[10] López-Arredondo D L, Leyva-González M A, González-Morales S I, López-Bucio J, Herrera-Estrella L . Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol, 2014,65:95-123.
doi: 10.1146/annurev-arplant-050213-035949 pmid: 24579991
[11] Høghjensen H, Schjoerring J, Soussana J F . The influence of phosphorus deficiency on growth and nitrogen fixation of white clover plants. Ann Bot, 2002,90:745-753.
doi: 10.1093/aob/mcf260 pmid: 12451030
[12] Arthikala M-K, Sanchez-Lopez R, Nava N, Santana O, Cárdenas L, Quinto C . RbohB, a Phaseolus vulgaris NADPH oxidase gene, enhances symbiosome number, bacteroid size, and nitrogen fixation in nodules and impairs mycorrhizal colonization. New Phytol, 2014,202:886-900.
doi: 10.1111/nph.12714 pmid: 24571730
[13] Van Noorden E E, Verbeek R, Dinh Q D, Jin J, Green A, Ng J L P, Mathesius U . Molecular signals controlling the inhibition of nodulation by nitrate in Medicago truncatula. Int J Mol Sci, 2016,17, doi: 10.3390/ijms17071060.
doi: 10.3390/ijms17071060
[14] Le R M, Khan S, Valentine A J . Organic acid accumulation may inhibit N2 fixation in phosphorus-stressed lupin nodules. New Phytol, 2008,177:956-964.
doi: 10.1111/j.1469-8137.2007.02305.x
[15] Sulieman S, Schulze J , Tran L S P. N-feedback regulation is synchronized with nodule carbon alteration in Medicago truncatula, under excessive nitrate or low phosphorus conditions. J Plant Physiol, 2014,171:407-410.
[16] Jebara M, Aouani M E, Payre H, Drevon J J . Nodule conductance varied among common bean ( Phaseolus vulgaris) genotypes under phosphorus deficiency. J Plant Physiol, 2005,162:309-315.
[17] Chaudhary M I, Adugyamfi J J, Saneoka H, Nguyen N T, Suwa R, Kanai S, Elshemy H A, Lightfoot D A, Fujita K . The effect of phosphorus deficiency on nutrient uptake, nitrogen fixation and photosynthetic rate in mashbean, mungbean and soybean. Physiol Plant, 2008,30:537-544.
doi: 10.1074/jbc.271.13.7609
[18] Lambers H, Clements J C, Nelson M N . How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines ( Lupinus, Fabaceae). Am J Bot, 2013,100:263-288.
[19] 姚玉波, 吴冬婷, 龚振平, 马春梅 . 磷素水平对大豆氮素积累及产量的影响. 核农学报, 2012,26:947-951.
Yao Y B, Wu D T, Gong Z P, Ma C M . Effect of phosphorus level on nitrogen accumulation and yield in soybean. J Nucl Agric Sci, 2012,26:947-951 (in Chinese with English abstract).
[20] Anna H, Kerstin H . Interaction effects of nitrogen and phosphorus on nodulation in red clover (Trifolium pratense L.). Acta Agric Scand, 2000,50:135-142.
[21] 严君, 韩晓增, 丁娇, 王影 . 东北黑土区大豆生长、结瘤及产量对氮、磷的响应. 植物营养与肥料学报, 2014,20:318-325.
Yan J, Han X Z, Ding J, Wang Y . Responses of growth, nodulation and yield of soybean to different nitrogen and phosphorus fertilization management. Plant Nutr Fert Sci, 2014,20:318-325 (in Chinese with English abstract).
[22] Mupangwa W T, Tagwira F . Groundnut yield response to single superphosphate, calcitic lime and gypsum on acid granitic sandy soil. Nutr Cycl Agroecosys, 2005,73:161-169.
doi: 10.1007/s10705-005-0075-3
[23] 郑亚萍, 信彩云, 王才斌, 孙秀山, 杨伟强, 万书波, 郑永美, 冯昊, 陈殿绪, 孙学武, 吴正锋 . 磷肥对花生根系形态、生理特性及产量的影响. 植物生态学报, 2013,37:777-785.
Zheng Y P, Xin C Y, Wang C B, Sun X S, Yang W Q, Wan S B, Zheng Y M, Feng H, Chen D X, Sun X W, Wu Z F . Effects of phosphorus fertilizer on root morphology, physiological characteristics and yield in peanut ( Arachis hypogaea). Chin J Plant Ecol, 2013,37:777-785 (in Chinese with English abstract).
[24] Ajay B C, Meena H N, Singh A L, Bera S K, Dagla M C, Kumar N, Makwana A D . Response of different peanut genotypes to reduced phosphorous availability. Indian J Genet Plant Breed, 2017,77:105-111.
[25] 郑永美, 孙秀山, 王才斌, 郑亚萍, 吴正锋, 孙学武, 于天一, 沈浦 . 高肥力土壤条件下不同基因型花生对氮素利用的差异. 应用生态学报, 2016,27:3977-3986.
Zheng Y M, Sun X S, Wang C B, Zheng Y P, Wu Z F, Sun X W, Yu T Y, Shen P . Differences in nitrogen utilization characteristics of different peanut genotypes in high fertility soils. Chin J Appl Ecol, 2016,27:3977-3986 (in Chinese with English abstract).
[26] 赵亚丽, 杨春收, 王群, 刘天学, 李潮海 . 磷肥施用深度对夏玉米产量和养分吸收的影响. 中国农业科学, 2010,43:4805-4813.
Zhao Y L, Yang C S, Wang Q, Liu T X, Li C H . Effect of phosphorus placement depth on yield and nutrient uptake of summer maize. Sci Agric Sin, 2010,43:4805-4813 (in Chinese with English abstract).
[27] Tsvetkova G E, Georgiev G I . Effect of phosphorus nutrition on the nodulation, nitrogen fixation and nutrient use efficiency of Gradyrhizobium japonicum soybean(Glycine max L. Merr.) symbiosis. Bulg J Plant Physiol, 2003: 331-335.
[28] Abbasi M K, Majeed A, Sadiq A, Khan S R . Application of Bradyrhizobium japonicum and phosphorus fertilization improved growth, yield and nodulation of soybean in the sub-humid hilly region of Azadjammu and Kashmir, Pakistan. Plant Prod Sci, 2008,11:368-376.
doi: 10.1626/pps.11.368
[29] Schulze J, Temple G, Temple S J, Beschow H, Vance C P . Nitrogen fixation by white lupin under phosphorus deficiency. Ann Bot, 2006,98:731-740.
doi: 10.1364/AO.49.001586 pmid: 2806177
[30] 吴正锋, 陈殿绪, 郑永美, 王才斌, 孙学武, 李向东, 王兴祥, 石程仁, 冯昊, 于天一 . 花生不同氮源供氮特性及氮肥利用率研究. 中国油料作物学报, 2016,38:207-213.
Wu Z F, Chen D X, Zheng Y M, Wang C B, Sun X W, Li X D, Wang X X, Shi C R, Feng H, Yu T Y . Supply characteristics of different nitrogen sources and nitrogen use efficiency of peanut. Chin J Oil Crop Sci, 2016,38:207-213 (in Chinese with English abstract).
[31] 孙虎, 李尚霞, 王月福, 王铭伦 . 施氮量对不同花生品种积累氮素来源和产量的影响. 植物营养与肥料学报, 2010,16:153-157.
Sun H, Li S X, Wang Y F, Wang M L . Effect of nitrogen application on source of nitrogen accumulation and yields of different peanut cultivars. Plant Nutr Fert Sci, 2010,16:153-157 (in Chinese with English abstract).
[32] 华伟, 曹国军, 耿玉辉, 车明, 韩圆圆, 黄岩 . 氮磷互作对春玉米产量及氮素吸收积累的影响. 中国农学通报, 2017,33:27-33.
Hua W, Cao G J, Geng Y H, Che M, Han Y Y, Huang Y . Interaction of nitrogen and phosphorus affecting spring maize yield and N uptake accumulation. Chin Agric Sci Bull, 2017,33:27-33 (in Chinese with English abstract).
[33] 张萌, 高志强, 李光, 赵红梅, 任爱霞, 孙敏 . 免耕覆盖条件下氮磷配施对旱地小麦氮素积累、分配及产量的影响. 麦类作物学报, 2014,34:364-371.
Zhang M, Gao Z Q, Li G, Zhao H M, Ren A X, Sun M . Effects of different nitrogen and phosphorus fertilizer on the nitrogen accumulation and distribution, yield of dryland wheat under no-tillage and film mulching. J Triticeae Crops, 2014,34:364-371 (in Chinese with English abstract).
[34] 侯云鹏, 孔丽丽, 李前, 杨建, 尹彩侠, 秦裕波, 张磊, 于雷, 王立春, 谢佳贵 . 不同施磷水平下水稻产量、养分吸收及土壤磷素平衡研究. 东北农业科学, 2016,41:61-66.
Hou Y P, Kong L L, Li Q, Yang J, Yin C X, Qin Y B, Zhang L, Yu L, Wang L C, Xie J G . Studies on effect of different phosphorus levels on yield, nutrient absorption of rice and soil phosphorus balance. J Northeast Agric Sci, 2016,41:61-66 (in Chinese with English abstract).
[35] 李月梅 . 磷肥对甘蓝型春油菜产量、磷肥利用效率及经济效益的影响. 中国土壤与肥料, 2012, ( 2):45-50.
Li Y M . Effect of phosphorus fertilizers on yield, phosphorus utilization efficiency and economic benefit of spring hybrid oilseed rape. Soil Fert Sci China, 2012, ( 2):45-50 (in Chinese with English abstract).
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[5] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[6] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[7] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[8] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[9] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[10] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[11] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[12] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[13] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[14] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[15] 黄冰艳, 孙子淇, 刘华, 房元瑾, 石磊, 苗利娟, 张毛宁, 张忠信, 徐静, 张梦圆, 董文召, 张新友. 花生巢式群体的脂肪含量遗传分析[J]. 作物学报, 2021, 47(6): 1100-1108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!