欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (8): 1137-1145.doi: 10.3724/SP.J.1006.2019.84159

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

甘蓝型油菜开花相关基因的鉴定及进化与表达分析

王艳花1,2,谢玲1,2,杨博1,2,曹艳茹1,2,李加纳1,2,*()   

  1. 1 西南大学农学与生物科技学院/油菜工程研究中心, 重庆 400715
    2 西南大学现代农业科学研究院, 重庆 400715
  • 收稿日期:2018-11-16 接受日期:2019-04-15 出版日期:2019-08-12 网络出版日期:2019-07-16
  • 通讯作者: 李加纳
  • 作者简介:E-mail: hawer313@163.com
  • 基金资助:
    本研究由重庆市民生工程主题专项项目(cstc2016shms-ztzx80020);高等学校学科创新引智基地项目(“111”项目)资助(B12006)

Flowering genes in oilseed rape: identification, characterization, evolutionary and expression analysis

WANG Yan-Hua1,2,XIE Ling1,2,YANG Bo1,2,CAO Yan-Ru1,2,LI Jia-Na1,2,*()   

  1. 1 College of Agronomy and Biotechnology, Southwest University/Chongqing Engineering Research Center for Rapeseed, Chongqing 400715, China
    2 Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
  • Received:2018-11-16 Accepted:2019-04-15 Published:2019-08-12 Published online:2019-07-16
  • Contact: Jia-Na LI
  • Supported by:
    This study was supported by the Special Project of Chongqing People’s Livelihood Project(cstc2016shms-ztzx80020);the Project of Intellectual Base for Discipline Innovation in Colleges and Universities (“111” Project)(B12006)

摘要:

开花是开花植物繁衍后代的前提, 控制开花时间对农作物获得高产稳产具有重要影响。然而, 关于甘蓝型油菜基因组水平上开花相关基因的信息报道较少。本研究对甘蓝型油菜开花相关的基因进行了鉴定、特征分析、进化与表达模式分析。结果表明, 基因组水平上共鉴定到甘蓝型油菜1173个开花相关基因, 这些基因分为9类, 且不均匀地分布在染色体上; 与白菜(AA, 2n=20)和甘蓝(CC, 2n=18)相比, 甘蓝型油菜(AACC, 2n=38)经过自然杂交和染色体加倍后, 使开花相关基因的数目显著扩增; 选择压力分析表明, 糖代谢信号途径的基因比自发途径的开花相关基因受到的选择压力更大; 仍有一些开花相关基因在拟南芥和油菜基因组内非常保守。甘蓝型油菜基因数目的扩增和功能分化导致其开花调控机制更加复杂, 本研究为油菜开花途径提供更多的信息, 也为阐明拟南芥和油菜开花基因的进化关系指明了方向。

关键词: 甘蓝型油菜, 开花基因, 进化, 调控途径, 表达分析

Abstract:

Flowering is a prerequisite for successful sexual reproduction. Controlling of flowering time is important for crop production in different geographical regions. However, few information regarding flowering genes or their evolution at genome-wide level in Brassica napus has been reported. In this study, identification, characterization, evolutionary and expression analysis of flowering genes in oilseed rape were performed. In total, 1173 flowering-related genes classified into nine types and distributed unevenly on the chromosomes were identified at the genome level of Brassica napus. Compared with Brassica rapa (AA, 2n = 20) and Brassica oleraca (CC, 2n = 18), B. napus (AACC, 2n = 38) showed significantly enlarge number of flowering-related genes due to natural hybridization and chromosome doubling. Selective pressure analysis showed that the autonomous pathway genes had less selection pressure than the genes involved in sugar metabolic pathway, suggesting that some key flowering-related genes are relatively conserved between B. napus and Arabidopsis thaliana. The present study provides more information on the B. napus flowering pathways and sheds light on the evolutionary relationship of flowering-related genes between B. napus and A. thaliana.

Key words: Brassica napus, flowering genes, evolution, regulatory pathway, expression analysis

图1

甘蓝型油菜开花相关基因鉴定与分类 Ag: 衰老途径; At: 环境温度; Au: 自发途径; Cp: 光周期途径; Fd: 花器官发育及顶端分生组织响应途径; Ft: 开花时间调控者; Ho: 激素途径; Su: 糖信号; Ve: 春化。"

图2

甘蓝型油菜开花相关基因的染色体分布"

图3

不同开花途径基因在拟南芥、白菜、甘蓝和甘蓝型油菜基因组内的数目"

图4

甘蓝型油菜不同开花途径基因的选择压力分析"

图5

甘蓝型油菜开花相关基因的组织表达分析"

[1] Srikanth A, Schmid M . Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci, 2011,68:2013-2037.
doi: 10.1007/s00018-011-0673-y
[2] Koornneef M, Alonso B C, Peeters A J M, Soppe W . Genetic control of flowering time in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol, 1998,49:345-370.
doi: 10.1146/annurev.arplant.49.1.345
[3] Bouche F, Lobet G, Tocquin P, Perilleux C . FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucl Acids Res, 2016,44:1167-1171.
[4] Blumel M, Dally N, Jung C . Flowering time regulation in crops-what did we learn from Arabidopsis?. Curr Opin Biotechnol, 2015,32:121-129.
doi: 10.1016/j.copbio.2014.11.023
[5] Fornara F, de Montaigu A, Coupland G . SnapShot: control of flowering in Arabidopsis. Cell, 2010,141:550-550.
doi: 10.1016/j.cell.2010.04.024
[6] Peng F Y, Hu Z, Yang R C . Genome-wide comparative analysis of flowering-related genes in Arabidopsis, wheat, and barley. Int J Plant Genomics, 2015,15:1-17.
[7] Raman H, Raman R, Coombes N, Song J, Prangnell R, Bandaranayake C, Tahira R, Sundaramoorthi V, Killian A, Meng J, Dennis E S, Balasubramanian S . Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. Plant Cell Environ, 2016,39:1228-1239.
doi: 10.1111/pce.12644
[8] Xu L, Hu K, Zhang Z, Guan C, Chen S, Hua W, Li J, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T . Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res, 2016,23:43-52.
[9] Wang J, Qiu Y, Cheng F, Chen X, Zhang X, Wang H, Song J, Duan M, Yang H, Li X . Genome-wide identification, characterization, and evolutionary analysis of flowering genes in radish (Raphanus sativus L.). BMC Genomics, 2017,18:981, doi: 10.1186/s12864-017-4377-z.
[10] Yang Z . PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol, 2007,24:1586-1591.
doi: 10.1093/molbev/msm088
[11] Liang Y, Wan N, Cheng Z, Mo Y, Liu B, Liu H, Raboanatahiry N, Yin Y, Li M . Whole-genome identification and expression pattern of the vicinal oxygen chelate family in rapeseed (Brassica napus L.). Front Plant Sci, 2017,8:745, doi: 10.3389/fpls.2017.00745.
[12] Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L . Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc, 2012,7:562-578.
doi: 10.1038/nprot.2012.016
[13] Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg S L . TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol, 2013,14:R36.
doi: 10.1186/gb-2013-14-4-r36
[14] Song Y H, Ito S, Imaizumi T . Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci, 2013,18:575-583.
doi: 10.1016/j.tplants.2013.05.003
[15] Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G . CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell, 2006,18:2971-2984.
doi: 10.1105/tpc.106.043299
[16] Dong M A, Farre E M, Thomashow M F . Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proc Natl Acad Sci USA, 2011,108:7241-7246.
doi: 10.1073/pnas.1103741108
[17] Sawa M, Kay S A . GIGANTEA directly activates flowering locus T in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2011,108:11698-11703.
[18] Nagel D H, Doherty C J, Pruneda P J L, Schmitz R J, Ecker J R, Kay S A . Genome-wide identification of CCA1 targets uncovers an expanded clock network in Arabidopsis. Proc Natl Acad Sci USA, 2015,112:4802-4810.
doi: 10.1073/pnas.1513609112
[19] Baudry A, Ito S, Song Y H, Strait A A, Kiba T, Lu S, Henriques R, Pruneda P J L, Chua N H, Tobin E M, Kay S A, Imaizumi T . F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell, 2010,22:606-622.
doi: 10.1105/tpc.109.072843
[20] Lou P, Wu J, Cheng F, Cressman L G, Wang X , McClung C R. Preferential retention of circadian clock genes during diploidization following whole genome triplication in Brassica rapa. Plant Cell, 2012,24:2415-2426.
[21] Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C . Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science, 2000,290:344-347.
doi: 10.1126/science.290.5490.344
[22] Noh B, Lee S H, Kim H J, Yi G, Shin E A, Lee M, Jung K J, Doyle M R, Amasino R M, Noh Y S . Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. Plant Cell, 2004,16:2601-2613.
doi: 10.1105/tpc.104.025353
[23] Simpson G G . The autonomous pathway: epigenetic and post- transcriptional gene regulation in the control of Arabidopsis flowering time. Curr Opin Plant Biol, 2004,7:570-574.
doi: 10.1016/j.pbi.2004.07.002
[24] Parcy F . Flowering: a time for integration. Int J Dev Biol, 2005,49:585-593.
doi: 10.1387/ijdb.041930fp
[25] Kim S, Soltis P S, Wall K, Soltis D E . Phylogeny and domain evolution in the APETALA2-like gene family. Mol Biol Evol, 2006,23:107-120.
doi: 10.1093/molbev/msj014
[26] Mitchum M G, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, Kato T, Tabata S, Kamiya Y, Sun T P . Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J, 2006,45:804-818.
doi: 10.1111/tpj.2006.45.issue-5
[27] Ariizumi T, Murase K, Sun T P, Steber C M . Proteolysis- independent downregulation of DELLA repression in Arabidopsis by the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1. Plant Cell, 2008,20:2447-2459.
doi: 10.1105/tpc.108.058487
[28] Achard P, Vriezen W H, Van D S D, Harberd N P . Ethylene regulates arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell, 2003,15:2816-2825.
doi: 10.1105/tpc.015685
[29] Samach A, Wigge P A . Ambient temperature perception in plants. Curr Opin Plant Biol, 2005,8:483-486.
doi: 10.1016/j.pbi.2005.07.011
[30] Thines B C, Youn Y, Duarte M I, Harmon F G . The time of day effects of warm temperature on flowering time involve PIF4 and PIF5. J Exp Bot, 2014,65:1141-1151.
doi: 10.1093/jxb/ert487
[31] Lee J H, Yoo S J, Park S H, Hwang I, Lee J S, Ahn J H . Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev, 2007,21:397-402.
doi: 10.1101/gad.1518407
[32] Yan Y, Shen L, Chen Y, Bao S, Thong Z, Yu H . A MYB-domain protein EFM mediates flowering responses to environmental cues in Arabidopsis. Dev Cell, 2014,30:437-448.
doi: 10.1016/j.devcel.2014.07.004
[33] Paul M J, Primavesi L F, Jhurreea D, Zhang Y . Trehalose metabolism and signaling. Annu Rev Plant Biol, 2008,59:417-441.
doi: 10.1146/annurev.arplant.59.032607.092945
[34] Dalchau N, Baek S J, Briggs H M, Robertson F C, Dodd A N, Gardner M J, Stancombe M A, Haydon M J, Stan G B, Goncalves J M, Webb A A . The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose. Proc Natl Acad Sci USA, 2011,108:5104-5109.
[35] Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn J E, Stitt M, Schmid M . Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science, 2013,339:704-707.
[36] Seo P J, Ryu J, Kang S K, Park C M . Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis. Plant J, 2011,65:418-429.
doi: 10.1111/tpj.2011.65.issue-3
[37] Jung J H, Seo Y H, Seo P J, Reyes J L, Yun J, Chua N H, Park C M . The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell, 2007,19:2736-2748.
doi: 10.1105/tpc.107.054528
[38] Mathieu J, Yant L J, Murdter F, Kuttner F, Schmid M . Repression of flowering by the miR172 target SMZ. PLoS Biol, 2009,7:e1000148.
doi: 10.1371/journal.pbio.1000148
[39] Wang J W, Czech B , Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell, 2009,138:738-749.
doi: 10.1016/j.cell.2009.06.014
[40] Matsoukas I G, Massiah A J, Thomas B . Starch metabolism and antiflorigenic signals modulate the juvenile-to-adult phase transition in Arabidopsis. Plant Cell Environ, 2013,36:1802-1811.
doi: 10.1111/pce.2013.36.issue-10
[41] Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J H, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires J C, Paterson A H, Chalhoub B, Wang B, Hayward A, Sharpe A G, Park B S, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King G J, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin I A, Batley J, Kim J S, Just J, Li J, Xu J, Deng J, Kim J A, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links M G, Zhao M, Jin M, Ramchiary N, Drou N, Berkman P J, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S J, Choi S R, Lee T H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z , Brassica rapa Genome Sequencing Project C. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet, 2011,43:1035-1039.
[42] Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Correa M, Da S C, Just J, Falentin C, Koh C S, Le C I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le P M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P . Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953.
[43] Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin I A, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang T J, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King G J, Pires J C, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe A G, Park B S, Ruperao P, Cheng F, Waminal N E, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee T H, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim H H, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson A H . The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun, 2014,5:3930, doi: 10.1038/ncomms4930.
[44] Fujiwara S, Oda A, Yoshida R, Niinuma K, Miyata K, Tomozoe Y, Tajima T, Nakagawa M, Hayashi K, Coupland G, Mizoguchi T . Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis. Plant Cell, 2008,20:2960-2971.
doi: 10.1105/tpc.108.061531
[45] Ding Z, Millar A J, Davis A M, Davis S J . TIME FOR COFFEE encodes a nuclear regulator in the Arabidopsis thaliana circadian clock. Plant Cell, 2007,19:1522-1536.
[46] Tao Z, Shen L, Liu C, Liu L, Yan Y, Yu H . Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. Plant J, 2012,70:549-561.
doi: 10.1111/tpj.2012.70.issue-4
[47] Wigge P A, Kim M C, Jaeger K E, Busch W, Schmid M, Lohmann J U, Weigel D . Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 2005,309:1056-1059.
doi: 10.1126/science.1114358
[48] Lee H, Suh S S, Park E, Cho E, Ahn J H, Kim S G, Lee J S, Kwon Y M, Lee I . The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev, 2000,14:2366-2376.
doi: 10.1101/gad.813600
[49] Liu C, Xi W, Shen L, Tan C, Yu H . Regulation of floral patterning by flowering time genes. Dev Cell, 2009,16:711-722.
doi: 10.1016/j.devcel.2009.03.011
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[4] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[7] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[8] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[9] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[10] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[11] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[12] 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089.
[13] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[14] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[15] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!