欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (11): 1750-1759.doi: 10.3724/SP.J.1006.2020.04097

• 耕作栽培·生理生化 • 上一篇    下一篇

不同施钾量条件下甘薯块根形成的内源激素变化及其与块根数量的关系

姜仲禹(), 唐丽雪, 柳洪鹃, 史春余*()   

  1. 山东农业大学农学院 / 作物生物学国家重点实验室, 山东泰安 271018
  • 收稿日期:2020-04-24 接受日期:2020-07-02 出版日期:2020-11-12 网络出版日期:2020-07-15
  • 通讯作者: 史春余
  • 作者简介:E-mail:jiangzhongyuyy@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(31371577);本研究由国家自然科学基金项目(31701357);山东省薯类产业创新团队首席专家项目(SDAIT-16-01)

Changes of endogenous hormones on storage root formation and its relationship with storage root number under different potassium application rates of sweet potato

JIANG Zhong-Yu(), TANG Li-Xue, LIU Hong-Juan, SHI Chun-Yu*()   

  1. College of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’ an 271018, Shandong, China
  • Received:2020-04-24 Accepted:2020-07-02 Published:2020-11-12 Published online:2020-07-15
  • Contact: Chun-Yu SHI
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31371577);This study was supported by the National Natural Science Foundation of China(31701357);the Potato Innovation Program for Chief Expert of Shandong Province(SDAIT-16-01)

摘要:

为探讨不同施钾量条件下甘薯块根形成的内源激素变化及其与块根数量的关系, 本试验以结薯数差异显著的鲜食型甘薯品种‘烟薯25’和‘北京553’为试验材料, 以氧化钾(K2O)为供试肥料, 设置0 (K0)、120 (K1)、240 (K2)和360 kg hm-2 (K3) 4个钾肥梯度, 研究不同施钾量对甘薯块根形成期粗根中的内源激素含量及相关代谢酶活性、收获期块根数量、块根整齐度等的影响。结果表明, 与不施钾肥处理(K0)相比, 施用钾肥降低了块根形成期粗根中吲哚乙酸氧化酶(indoleacetic acid oxidase, IAAO)、过氧化物酶(peroxidase, POD)的活性, 提高了生长素(indole-3-acetic acid, IAA)含量; 同时, 增加了玉米素核苷(zeatin riboside, ZR)含量, 降低了赤霉素(gibberellins, GA3)含量。施钾通过调控甘薯粗根中的内源激素水平, 提升了初生形成层的活动能力, 促进了不定根向块根的分化。与CK相比, 增施钾肥显著提高了收获期烟薯25和北京553的单株结薯数与单薯重, 提高了块根产量; 烟薯25和北京553的单株结薯数增幅分别为3.16%~25.40%和3.85%~33.11%, 产量增幅分别为4.22%~17.31%和3.94%~18.45%。2个品种各施钾处理相比, 均为K2处理的单株结薯数最多, 单薯重和块根产量最高, 块根整齐度最好。

关键词: 甘薯, 施钾量, 内源激素, 初生形成层, 块根数量, 块根整齐度

Abstract:

In order to explore the changes of endogenous hormones on storage root formation and its relationship with storage root number under different potassium application rates of sweet potato root, sweet potato varieties ‘Yanshu 25’ and ‘Beijing 553’ with significant differences in storage root number were used as experimental materials, potassium oxide (K2O) was used as fertilizer, and four potassium fertilizer gradients of 0 (K0), 120 (K2), 240 (K3), and 360 kg hm-2 (K4) were set. The effects of different potassium application rates on the contents of endogenous hormones, the activity of related metabolic enzymes, the number of storage root and root evenness in swelling roots of sweet potato during root formation and harvest stage were studied. Compared with the treatment without potassium fertilizer (K0), the application of potassium fertilizer decreased the enzyme activities of indoleacetic acid oxidase (IAAO) and peroxidase (POD), increased the content of indole-3-acetic acid (IAA), increased the content of zeatin riboside (ZR) and decreased the content of gibberellins (GA3). Potassium application enhanced the activity of primary cambium and promoted the differentiation from adventitious root to storage root by regulating the content of endogenous hormones in swelling roots of sweet potato. Compared with the control, the application of potash fertilizer significantly increased the number and weight of storage roots per plant and root yield of ‘Yanshu 25’ and ‘Beijing 553’. The number of storage roots per plant of ‘Yanshu 25’ and ‘Beijing 553’ increased by 3.16%-25.40% and 3.85%-33.11%, respectively, and the yield increased by 4.22%-17.31% and 3.94%-18.45%, respectively. Compared with the potassium application treatments of the two varieties, the K2 treatment had the highest storage roots number per plant, the highest weight and yield of storage roots, with the best root evenness.

Key words: sweet potato, potassium application rate, endogenous hormone, primary cambium, root number, root evenness

表1

甘薯块根产量及其构成因素"

年份
Year
品种
Variety
处理
Treatment
单株结薯数
Storage root
单薯重
Fresh weight
(g lump-1)
块根产量
Storage root yield
(kg hm-2)
2017 烟薯25 YS25 K0 2.52 d 286.56 c 39,558.35 c
K1 2.75 c 304.47 b 41,227.94 bc
K2 3.16 a 341.81 a 46,407.27 a
K3 2.93 b 334.22 a 44,457.46 ab
北京553 BJ553 K0 1.51 c 292.96 c 22,632.30 c
K1 1.69 b 311.82 b 23,890.75 b
K2 2.01 a 328.95 a 26,807.34 a
K3 1.94 a 319.61 ab 26,503.20 a
2018 烟薯25 YS25 K0 4.59 c 137.02 b 34,072.14 b
K1 4.74 c 152.22 ab 37,139.85 b
K2 4.94 a 165.89 a 39,836.92 ab
K3 4.80 ab 163.20 a 39,090.54 a
北京553 BJ553 K0 3.00 b 212.06 b 34,850.80 c
K1 3.12 ab 225.75 ab 36,222.25 bc
K2 3.31 a 240.72 a 40,063.04 a
K3 3.20 ab 233.91 a 38,467.80 ab

表2

收获期甘薯大、中、小型薯块产量及薯率(2018年)"

品种
Variety
处理
Treatment
大型薯产量
Large potato yield
(kg hm-2)
大型薯率
Large potato ratio
(%)
中型薯产量
Medium potato yield
(kg hm-2)
中型薯
Medium potato ratio
(%)
小型薯产量Small potato
yield
(kg hm-2)
小型薯率
Small potato ratio
(%)
烟薯25 YS25 K0 12,180.75 35.75 18,862.35 55.36 3025.65 8.88
K1 9,183.45 25.09 21,663.60 58.33 6157.80 16.58
K2 6,093.60 15.61 28,754.55 73.66 4188.60 10.73
K3 11,221.20 28.13 22,242.90 55.76 6426.30 16.11
北京553 BJ553 K0 21,553.80 61.06 12,484.05 34.93 1433.25 4.01
K1 21,693.90 59.64 12,666.90 34.97 1952.40 5.39
K2 14,583.45 36.08 22,579.50 56.36 3024.75 7.55
K3 14,241.45 39.03 20,291.10 55.13 2149.50 5.84

表3

收获期甘薯块根整齐度(2018年)"

品种
Variety
处理
Treatment
单薯重
Fresh weight
块根长度
Storage root length
块根直径
Storage root diameter
(g lump-1) CV (%) (cm lump-1) CV (%) (mm lump-1) CV (%)
烟薯25
YS25
K0 137.02 d 13.86 22.33 c 26.73 44.39 c 43.09
K1 152.22 c 11.78 24.00 ab 19.12 50.23 b 28.16
K2 160.84 a 8.72 24.50 a 14.68 53.57 a 18.85
K3 156.02 b 9.24 23.50 b 26.09 49.92 b 25.16
北京553
BJ553
K0 202.74 d 12.05 19.46 c 28.33 70.28 a 28.83
K1 225.75 c 6.03 22.46 ab 22.09 65.45 b 26.58
K2 239.59 a 5.16 23.79 a 20.56 55.40 c 25.61
K3 214.63 c 7.76 21.39 b 23.84 66.21 b 27.78

图1

施钾量对甘薯粗根中生长素含量的影响(2018年) 以不同字母的值在处理间差异显著(P < 0.05)。处理和缩写同表1。"

图2

施钾量对甘薯粗根中玉米核苷含量的影响(2018年) 标以不同字母的值在处理间差异显著(P < 0.05)。处理和缩写同表1。"

图3

施钾量对甘薯粗根中赤霉素含量的影响(2018年) 标以不同字母的值在处理间差异显著(P < 0.05)。处理和缩写同表1。"

图4

增施钾肥对甘薯粗根中吲哚乙酸氧化酶活性的影响(2018年) 标以不同字母的值在处理间差异显著(P < 0.05)。处理和缩写同表1。"

图5

增施钾肥对甘薯粗根中过氧化物酶活性的影响(2018年) 标以不同字母的值在处理间差异显著(P < 0.05)。处理和缩写同表1。"

[1] 史春余, 王振林, 赵秉强, 郭风法, 余松烈. 钾营养对甘薯某些生理特性和产量形成的影响. 植物营养与肥料学报, 2002,8:81-85.
Shi C Y, Wang Z L, Zhao B Q, Guo F F, Yu S L. Effects of potassium nutrition on some physiological characteristics and yield formation of sweet potato. J Plant Nutr Fert, 2002,8:81-85 (in Chinese with English abstract).
[2] 郑艳霞. 钾对甘薯同化物积累和分配的影响. 土壤肥料, 2004, (4):14-16.
Zheng Y X. Effect of potassium on accumulation and distribution of assimilates in sweet potato. Soil Fert, 2004, (4):14-16 (in Chinese with English abstract).
[3] 柳洪鹃, 史春余, 张立明, 张海峰, 王振振, 柴沙沙. 钾素对食用型甘薯糖代谢相关酶活性的影响. 植物营养与肥料学报, 2012,18:724-732.
Liu H J, Shi C Y, Zhang L M, Zhang H F, Wang Z Z, Chai S S. Effect of potassium on the activities of enzymes related to sugar metabolism in edible sweet potato. J Plant Nutr Fert, 2012,18:724-732 (in Chinese with English abstract).
[4] 宁运旺, 马洪波, 张辉, 许建平, 汪吉东, 许仙菊, 张永春. 氮、磷、钾对甘薯生长前期根系形态和植株内源激素含量的影响. 江苏农业学报, 2013,29:1326-1332.
Ning Y W, Ma H B, Zhang H, Xu J P, Wang J D, Xu X J, Zhang Y C. Effects of nitrogen, phosphorus and potassium on root morphology and plant endogenous hormone content in early growth stage of sweet potato. Jiangsu J Agric Sci, 2013,29:1326-1332 (in Chinese with English abstract).
[5] 汪顺义, 李欢, 刘庆, 史衍玺. 施钾对甘薯根系生长和产量的影响及其生理机制. 作物学报, 2017,43:1057-1066.
Wang S Y, Li H, Liu Q, Shi Y X. Effects of potassium application on root growth and yield of sweet potato and its physiological mechanism. Acta Agron Sin, 2017,43:1057-1066 (in Chinese with English abstract).
[6] 于振文. 作物栽培学各论北方本(第2版). 北京: 中国农业出版社, 2013. pp 160-165.
Yu Z W. On Crop Cultivation in North China, 2nd edn. Beijing: China Agriculture Press, 2013. pp 160-165(in Chinese).
[7] Wilson L A. Effect of different levels of nitrate-nitrogen supply on early tuber growth of two sweet potato cultivars. Tropical Agric (Trinidad), 1973,50:53-54.
[8] 胡立勇, 丁艳锋. 作物栽培学(第2版). 北京: 高等教育出版社, 2003. pp 284-289.
Hu L Y, Ding Y F. Crop Cultivation, 2nd edn. Beijing: Higher Education Press, 2003. pp 284-289(in Chinese).
[9] 王忠. 植物生理学(第2版). 北京: 中国农业出版社, 2008. pp 350-410.
Wang Z. Plant Physiology,2nd edn. Beijing: China Agriculture Press, 2008. pp 350-410(in Chinese).
[10] Ravi S K, Naskar T, Makeshkumar, Binoy B, Prakash K. Molecular physiology of storage root formation and development in sweet potato. J Root Crops, 2009,35:1-27.
[11] 何钟佩. 农作物化学控制实验指导. 北京: 中国农业大学出版社, 1993. pp 60-68.
He Z P. Guidance of Crop Chemical Control Experiment. Beijing: China Agricultural University Press, 1993. pp 60-68(in Chinese).
[12] 李秉真. 苹果梨叶片中IAA氧化酶的测定. 光谱学与光谱分析, 2001,21:837-839.
Li B Z. Determination of IAA oxidase in leaves of apple pear. Spectroscopy Spectral Anal, 2001,21:837-839 (in Chinese with English abstract).
[13] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 164-165.
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000. pp 164-165(in Chinese).
[14] 郭小丁, 谢一芝, 尹晴红. 鲜食甘薯分级标准探讨. 江苏农业科学, 2005, (4):115-117.
Guo X D, Xie Y Z, Yin Q H. Discussion on grading standard of fresh sweet potato. Jiangsu Agric Sci, 2005, (4):115-117 (in Chinese with English abstract).
[15] 季志仙, 成灿土, 王忠明. 浙江省优质食用型甘薯新品种选育与产业化. 见:马代夫, 刘庆昌主编. 中国甘薯育种与产业化. 北京: 中国农业大学出版社, 2005. pp 78-81.
Ji Z X, Cheng C T, Wang Z M. Breeding and Industrialization of New Varieties of High-quality Edible Sweet Potato in Zhejiang Province. In: Ma D F, Liu Q C, eds. Sweet Potato Breeding and Industrialization in China. Beijing: China Agricultural University Press, 2005. pp 78-81(in Chinese).
[16] Sue S, Sugiyama T, Hashizume T. Cytokinins relating with growth and tuberous root formation in sweet potato. From the results of GC-MS-Proc 17th Annu. Meet Soc Chem Regul Plant, 1982,17:35-36.
[17] Matsuo T, Mitsuzono , Okada R, Itoo S. Variations in the levels of major free cytokinins and free abscisic acid during tuber development of sweet potato. J Plant Growth Regul, 1988,7:249-258.
[18] 钮世辉, 李伟, 陈晓阳. 赤霉素对根尖径向生长的调节作用研究. 北京林业大学学报, 2013,35(3):71-76.
Niu S H, Li W, Chen X Y. Study on the regulatory effect of gibberellin on radial root tip growth. J Beijing For Univ, 2013,35(3):71-76 (in Chinese with English abstract).
[19] 原牡丹, 侯智霞, 翟明普, 苏艳. IAA分解代谢相关酶(IAAO、POD)的研究进展. 中国农学通报, 2008,24(8):88-92.
Yuan M D, Hou Z X, Zhai M P, Su Y. Research progress of catabolism related enzymes (IAAO, POD) of IAA. China Agric Bull, 2008,24(8):88-92 (in Chinese with English abstract).
[20] 史春余, 王振林, 赵秉强, 郭风法, 余松烈. 钾营养对甘薯块根薄壁细胞微结构、14C同化物分配和产量的影响. 植物营养与肥料学报, 2002,8:335-339.
Shi C Y, Wang Z L, Zhao B Q, Guo F F, Yu S L. Effects of potassium nutrition on microstructure, distribution of14C assimilates and yield of parenchyma cells in sweet potato roots. J Plant Nutr Fert, 2002,8:335-339 (in Chinese with English abstract).
[21] 柳洪鹃, 史春余, 柴沙沙, 王翠娟, 任国博, 江燕, 司成成. 不同时期施钾对甘薯光合产物运转动力的调控. 植物营养与肥料学报, 2015,21:171-180.
Liu H J, Shi C Y, Chai S S, Wang C J, Ren G B, Jiang Y, Si C C. Regulation of potassium application on photosynthate transport dynamics of sweet potato at different stages. J Plant Nutr Fert, 2015,21:171-180 (in Chinese with English abstract).
[22] 任国博, 史春余, 姚海兰, 柳洪鹃, 孙哲. 施钾时期对甘薯产量及钾肥利用率的影响. 中国土壤与肥料, 2015, (5):33-36.
Ren G B, Shi C Y, Yao H L, Liu H J, Sun Z. Effect of potassium application period on yield and potassium utilization efficiency of sweet potato. Soil Fert China, 2015, (5):33-36 (in Chinese with English abstract).
[23] 张彬彬, 史春余, 柳洪鹃, 任国博, 孙哲. 钾肥基施利于甘薯块根产量的形成. 植物营养与肥料学报, 2017,23:208-216.
Zhang B B, Shi C Y, Liu H J, Ren G B, Sun Z. The basal application of potassium fertilizer is beneficial to the formation of root yield of sweet potato. J Plant Nutr Fert, 2017,23:208-216 (in Chinese with English abstract).
[24] 齐鹤鹏, 安霞, 刘源, 朱国鹏, 汪吉东, 张永春. 施钾量对甘薯产量及钾素吸收利用的影响. 江苏农业学报, 2016,32(1):84-89.
Qi H P, An X, Liu Y, Zhu G P, Wang J D, Zhang Y C. Effect of potassium application rate on yield and potassium absorption and utilization of sweet potato. J Jiangsu Agric Sci, 2016,32(1):84-89 (in Chinese with English abstract).
[25] 刘倩, 侯松, 刘庆, 李欢, 史衍玺. 移栽时期对食用型甘薯品种烟薯25号产量和品质的影响. 作物杂志, 2017, (5):136-141.
Liu Q, Hou S, Liu Q, Li H, Shi Y X. Effect of transplanting period on yield and quality of edible sweet potato variety Yanshu 25. Crops, 2017, (5):136-141 (in Chinese with English abstract).
[26] 王翠娟, 史春余, 刘娜, 刘双荣, 余新地. 结薯数差异显著的甘薯品种生长前期根系特性及根叶糖组分比较. 作物学报, 2016,42:131-140.
Wang C J, Shi C Y, Liu N, Liu S R, Yu X D. Comparison of root characteristics and root and leaf sugar components of sweet potato varieties with significant differences in tuber number in the early growth stage. Acta Agron Sin, 2016,42:131-140 (in Chinese with English abstract).
[27] Sakakibara H, Takei K, Hirose N. Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci, 2006,11:440-448.
pmid: 16899391
[28] McDavid C R, Alamu S. The effect of growth regulatorson tuber initiation and growth in rooted leaves of two sweetpotato cultivars. Ann Bot, 1980,45:363-364.
[29] Matsuo T, Yonedo T, Itoo S. Identification of free cytokinins as the changes in endogenous levels during tuber development of sweet potato (Ipomoea batatas Lam). Plant Cell Physiol, 1983,24:1305-1312.
[30] Hozyo Y, Murata T, Yoshida T. The development of tuberous roots in grafting sweet potato plants Ipomoea batatas Lam. Bull Nat Int Agric Sci, 1971,22:165-189.
[31] Nakatani M, Komeichi M. Changes in the endogenous level of zeatin riboside, abscisic acid and indole acetic acid during formation and thickening of tuberous roots in sweet potato. Jpn J Crop Sci, 1991,60:91-100.
[32] 王庆美, 张立明, 王振林. 甘薯内源激素变化与块根形成膨大的关系. 中国农业科学, 2005,38:2414-2420.
Wang Q M, Zhang L M, Wang Z L. Relationship between changes of endogenous hormones and root tuber swelling in sweet potato. Chin Agric Sci, 2005,38:2414-2420 (in Chinese with English abstract).
[33] 王翠娟, 史春余, 王振振, 柴沙沙, 柳洪鹃, 史衍玺. 覆膜栽培对甘薯幼根生长发育、块根形成及产量的影响. 作物学报, 2014,40:1677-1685.
Wang C J, Shi C Y, Wang Z Z, Chai S S, Liu H J, Shi Y X. Effects of plastic film mulching cultivation on young root growth, root tuber formation and yield of sweet potato. Acta Agron Sin, 2014,40:1677-1685 (in Chinese with English abstract).
[34] Jimenez J I, Garner J O. Effect of growth regulators on the initiation and development of tubers in rooted leaves of sweet potato (Ipomoea batatas Lam.). Phyton Argent, 1983,43:117-124.
[35] Nakatani M, Koda Y. Potato tuber inducing activity of the extracts of some root and tuber crops. Jpn J Crop Sci, 1992,61:394-400.
[36] 赵仲仁, 李广仁, 黄桂琴, 杨淑华. 几种抑制剂对钾和IAA诱导的离体黄瓜子叶不定根形成的影响. 植物学报, 1997,39:64-67.
Zhao Z R, Li G R, Huang G Q, Yang S H. Effects of several inhibitors on adventitious root formation induced by potassium and IAA in isolated cucumber cotyledons. Acta Bot Sin, 1997,39:64-67 (in Chinese with English abstract).
[37] 后猛, 王欣, 张允刚, 唐维, 马代夫, 李强. 外源激素对甘薯生长发育的影响. 西南农业学报, 2013,26:1829-1832.
Hou M, Wang X, Zhang Y G, Tang W, Ma D F, Li Q. Effects of exogenous hormones on the growth and development of sweet potato. J Southwest Agric, 2013,26:1829-1832 (in Chinese with English abstract).
[38] 苗小荣, 牛俊奇, 王道波, 王爱勤, 何龙飞. 薯类作物储藏根、茎的形成和膨大的调节机制研究进展. 分子植物育种, 2019,17:2042-2047.
Miao X R, Niu J Q, Wang D B, Wang A Q, He L F. Research progress on the regulation mechanism of storage root and stem formation and expansion of potato crops. Mol Plant Breed, 2019,17:2042-2047 (in Chinese with English abstract).
[39] 武维华. 植物生理学(第2版). 北京: 科学出版社, 2008. pp 90-99.
Wu W H. Plant Physiology, 2nd edn. Beijing: Science Press, 2008. pp 90-99(in Chinese).
[1] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[2] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[3] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[4] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[5] 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319.
[6] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
[7] 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207.
[8] 于宁宁,张吉旺,任佰朝,赵斌,刘鹏. 综合农艺管理对夏玉米叶片生长发育及内源激素含量的影响[J]. 作物学报, 2020, 46(6): 960-967.
[9] 刘永晨,司成成,柳洪鹃,张彬彬,史春余. 改善土壤通气性促进甘薯源库间光合产物运转的原因解析[J]. 作物学报, 2020, 46(3): 462-471.
[10] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[11] 张欢, 杨乃科, 商丽丽, 高晓茹, 刘庆昌, 翟红, 高少培, 何绍贞. 甘薯抗旱相关基因IbNAC72的克隆与功能分析[J]. 作物学报, 2020, 46(11): 1649-1658.
[12] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响[J]. 作物学报, 2020, 46(11): 1760-1770.
[13] 万泽花,任佰朝,赵斌,刘鹏,张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化[J]. 作物学报, 2019, 45(9): 1446-1453.
[14] 史文卿,张彬彬,柳洪鹃,赵庆鑫,史春余,王新建,司成成. 甘薯块根形成和膨大对土壤紧实度的响应机制及与产量的关系[J]. 作物学报, 2019, 45(5): 755-763.
[15] 张海燕,解备涛,汪宝卿,董顺旭,段文学,张立明. 不同甘薯品种抗旱性评价及耐旱指标筛选[J]. 作物学报, 2019, 45(3): 419-430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!