欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (11): 1760-1770.doi: 10.3724/SP.J.1006.2020.04079

• 耕作栽培·生理生化 • 上一篇    下一篇

不同时期干旱胁迫对甘薯生长和渗透调节能力的影响

张海燕1(), 汪宝卿1(), 冯向阳2, 李广亮3, 解备涛1, 董顺旭1, 段文学1,*(), 张立明4,*()   

  1. 1 山东省农业科学院作物研究所 / 农业农村部黄淮海薯类科学观测实验站 / 特色作物山东省工程实验室, 山东济南 250100
    2 昌乐县农业农村局, 山东昌乐 262400
    3 邹城市张庄镇农技站, 山东邹城 273507
    4 山东省农业科学院, 山东济南 250100
  • 收稿日期:2020-03-27 接受日期:2020-07-02 出版日期:2020-11-12 网络出版日期:2020-07-14
  • 通讯作者: 段文学,张立明
  • 作者简介:张海燕,E-mail:zhang_haiyan02@163.com|汪宝卿,E-mail:76853722@qq.com
  • 基金资助:
    本研究由山东省薯类产业创新团队项目(SDAIT-16-09);国家现代农业产业技术体系建设专项(CARS-10-B08);山东省农业科学院农业科技创新工程项目(CXGC2016A05);山东省农业重大应用技术创新项目(SD2019ZZ022)

Effects of drought treatments at different growth stages on growth and the activity of osmotic adjustment in sweet potato [Ipomoea batatas (L.) Lam.]

ZHANG Hai-Yan1(), WANG Bao-Qing1(), FENG Xiang-Yang2, LI Guang-Liang3, XIE Bei-Tao1, DONG Shun-Xu1, DUAN Wen-Xue1,*(), ZHANG Li-Ming4,*()   

  1. 1 Crop Research Institute, Shandong Academy of Agricultural Sciences / Scientific Observation and Experimental Station of Tubers and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs / Shandong Engineering Laboratory of Featured Crops, Jinan 250100, Shandong, China
    2 Agricultural and Rural Bureau of Changle, Changle 262400, Shandong, China
    3 Zhangzhuang Town Agrotechnical Station of Zoucheng City, Zoucheng 273507, Shandong, China
    4 Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
  • Received:2020-03-27 Accepted:2020-07-02 Published:2020-11-12 Published online:2020-07-14
  • Contact: Wen-Xue DUAN,Li-Ming ZHANG
  • Supported by:
    This study was supported by the Shandong Province Modern Agricultural Technology System Tubers and Root Crops Innovation Team(SDAIT-16-09);the China Agriculture Research System(CARS-10-B08);the Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2016A05);and the Major Agricultural Application Technological Innovation Project in Shandong Province(SD2019ZZ022)

摘要:

在人工控水条件下, 以抗旱品种济薯21和不抗旱品种济紫薯1号为试验材料,每个品种设全生育期正常灌水(WW, 对照)、发根分枝期干旱胁迫(DS1)、蔓薯并长期干旱胁迫(DS2)、快速膨大期干旱胁迫(DS3) 4个水分处理,研究不同时期干旱胁迫对甘薯生长和渗透调节能力的影响。结果表明,干旱胁迫导致甘薯鲜薯产量显著下降,不同时期干旱胁迫比较,以发根分枝期干旱胁迫(DS1)下降幅度最大,品种间比较,以不抗旱品种下降幅度最大。从3年平均数据来看, DS1处理, 济薯21和济紫薯1号的鲜薯产量分别比对照降低28.59%和38.77%; DS2处理分别比对照降低25.20%和33.50%; DS3处理分别比对照降低14.55%和19.56%。干旱胁迫导致甘薯生物量显著下降,栽后100d,DS1、DS2、DS3的地上部生物量与对照相比,济薯21分别降低32.68%、20.79%、11.72%,济紫薯1号分别降低46.45%、31.89%、18.43%;地下部生物量与对照相比,济薯21分别降低37.69%、25.86%、10.67%,济紫薯1号分别降低54.34%、33.48%、14.20%。干旱胁迫条件下,甘薯功能叶相对含水量下降,功能叶、纤维根和块根中的可溶性糖、可溶性蛋白、游离氨基酸总量和脯氨酸等渗透调节物质含量均上升, 干旱胁迫时间越早,下降或升高的幅度越大。前期干旱胁迫对渗透调节能力的影响无法在复水后得到有效恢复,而后期干旱胁迫对渗透调节能力的影响可在复水后恢复到对照水平。

关键词: 甘薯, 干旱胁迫, 渗透调节能力

Abstract:

Field experiments were conducted using two sweet potato cultivars (Jishu 21, a drought-tolerant cultivar, and Jizishu 1, a drought-sensitive cultivar) with four water treatments to investigate the effects of drought treatments at different growth stages on growth and the activity of osmotic adjustment in sweet potato [Ipomoea batatas (L.) Lam.], including well-watered treatment during the whole growth period (WW, control), drought stress during the establishment stage (DS1), drought stress during the storage root initial stage (DS2), and drought stress during the storage root bulking stage (DS3). Drought stress resulted in significant decrease of fresh weight of storage roots in sweet potato. Compared with drought stress in different periods, drought stress during the establishment stage (DS1) decreased the fresh weight most. Compared between cultivars, drought-sensitive cultivar decreased the fresh weight most. The average in three years, compared with the control, the fresh weight of drought-tolerant cultivar (Jishu 21) and drought-sensitive cultivar (Jizishu 1) decreased 28.59% and 38.77% in DS1 treatment, respectively, while 25.20% and 33.50% in DS2 treatment, respectively and 14.55% and 19.56% in DS3 treatment, respectively. Drought stress resulted in significant decrease of biomass of storage roots in sweet potato. One hundred days after planting, compared with the control, the biomass of aboveground part of Jishu 21 in DS1, DS2, and DS3 decreased 32.68%, 20.79%, and 11.72%, respectively, while Jizishu 1 decreased 46.45%, 31.89%, and 18.43%, respectively. The biomass of underground part of Jishu 21 in DS1, DS2, and DS3 decreased 37.69%, 25.86%, and 10.67%, respectively, while Jizishu 1 decreased 54.34%, 33.48%, and 14.20%, respectively. Under drought stress, the relative water content of functional leaves decreased, and the content of soluble sugar, soluble protein, free amino acid and proline in functional leaves, fibrous roots and storage roots increased. The earlier the application of drought stress, the greater the decrease or increase. The effects of drought stress applied at early stages on osmotic adjustment could not be effectively recovered after re-watering, while the osmotic adjustment could be recovered to the control level after re-watering when drought stress was applied at later stage.

Key words: sweet potato, drought stress, activity of osmotic adjustment

表1

不同时期的土壤相对含水量"

生长期
Growth stage
栽插后天数
Days from planting (d)
土壤相对含水量Relative soil water content (%)
WW DS1 DS2 DS3
发根分枝期Establishment stage 0-30 75±5 35±5 75±5 75±5
蔓薯并长期Storage root initial stage 30-60 75±5 75±5 35±5 75±5
快速膨大期Storage root bulking stage 60-90 75±5 75±5 75±5 35±5

表2

不同时期干旱胁迫对甘薯鲜薯产量的影响"

处理
Treatment
济薯21 Jishu 21 济紫薯1号 Jizishu 1
鲜薯产量
Fresh weight (kg hm-2)
比对照
Compared with CK (%)
鲜薯产量
Fresh weight (kg hm-2)
比对照
Compared with CK (%)
WW 14,084.29±425.30 a 12,091.02±450.74 a
DS1 10,057.41±359.92 c -28.59 7403.10±362.38 c -38.77
DS2 10,535.46±368.99 c -25.20 8040.26±371.05 c -33.50
DS3 12,034.76±389.41 b -14.55 9725.62±349.28 b -19.56

表3

不同时期干旱胁迫对甘薯地上部和地下部生物量的影响"

品种
Variety
栽植后天数
Days after planting (d)
处理 Treatment
WW DS1 DS2 DS3
地上部生物量
Biomass of aboveground part (g plant-1)
济薯21
Jishu 21
40 156.47±26.53 a 101.58±22.84 b 150.85±27.02 a 153.95±24.68 a
60 536.65±24.25 a 289.13±21.31 c 457.06±20.26 b 537.19±20.69 a
80 697.55±24.15 a 446.87±21.87 d 534.30±22.74 c 607.51±21.34 b
100 738.86±27.77 a 497.41±23.48 d 585.23±20.14 c 652.23±21.65 b
济紫薯1号
Jizishu 1
40 156.28±21.84 a 89.08±20.69 b 150.20±21.37 a 155.60±23.56a
60 648.93±26.54 a 328.34±23.24 c 452.25±22.76 b 605.27±28.67 a
80 817.86±21.73 a 435.04±26.58 d 525.66±22.76 c 672.33±25.67 b
100 867.39±24.81 a 464.49±22.16 d 590.75±25.09 c 707.52±28.45 b
地下部生物量
Biomass of underground part (g plant-1)
济薯21
Jishu 21
40 14.23±1.26 a 8.25.±1.35 c 11.78±1.13 b 13.67±1.77 ab
60 29.94±1.36 a 21.19±1.09 c 26.15±1.68 b 31.68±1.96 a
80 89.46±2.76 a 56.07±3.87 d 68.42±1.86 c 80.87±1.96 b
100 137.50±4.89 a 85.67±3.15 d 101.94±4.06 c 122.83±3.04 b
济紫薯1号
Jizishu 1
40 13.73±2.46 a 6.73±1.07 c 10.44±1.84 b 13.97±1.58 a
60 34.03±1.56 a 16.97±1.26 c 22.02±2.77 b 31.39±2.67 a
80 68.36±3.24 a 35.30±3.68 d 49.21±3.37 c 61.64±3.24 b
100 118.50±3.25 a 54.11±3.12 d 78.83±5.98 c 101.67±5.06 b

图1

不同时期干旱胁迫对甘薯功能叶相对含水量的影响 JS21: 济薯21; JZ1: 济紫薯1号。误差线表示3次重复的标准差。处理同表1。"

图2

不同时期干旱胁迫对甘薯功能叶可溶性糖、可溶性蛋白、游离氨基酸和脯氨酸含量的影响 JS21: 济薯21; JZ1: 济紫薯1号。误差线表示3次重复的标准差。处理同表1。"

图3

不同时期干旱胁迫对甘薯纤维根可溶性糖、可溶性蛋白、游离氨基酸和脯氨酸含量的影响 JS21: 济薯21; JZ1: 济紫薯1号。误差线表示3次重复的标准差。处理同表1。"

图4

不同时期干旱胁迫对甘薯块根可溶性糖、可溶性蛋白、游离氨基酸和脯氨酸含量的影响 JS21: 济薯21; JZ1: 济紫薯1号。误差线表示3次重复的标准差。处理同表1。"

[1] Babajide O O, Patrick O A, David M M, Sunette M L, Abe S G. Greenhouse and field evaluation of selected sweetpotato ( Ipomoea batatas(L.) Lam.) accessions for drought tolerance in South Africa. Am J Plant Sci, 2014,5:3328-3339.
[2] 张海燕, 段文学, 解备涛, 董顺旭, 汪宝卿, 史春余, 张立明. 不同时期干旱胁迫对甘薯内源激素的影响及其与块根产量的关系. 作物学报, 2018,44:126-136.
Zhang H Y, Duan W X, Xie B T, Dong S X, Wang B Q, Shi C Y, Zhang L M. Effects of drought stress at different growth stages on endogenous hormones and its relationship with storage root yield in sweetpotato. Acta Agron Sin, 2018,44:126-136 (in Chinese with English abstract).
[3] Chowdhury S R, Singh R, Kundu D K, Antony E, Verma H N. Growth, dry-matter partitioning and yield of sweet potato ( Ipomoea batatas L.) as influenced by soil mechanical impedance and mineral nutrition under different irrigation regimes. Adv Hortic Sci, 2002,16:25-29.
[4] Villordon A Q, Labonte D, Firon N, Kfir Y, Pressman E, Schwartz A. Characterization of adventitious root development in sweetpotato. Hortscience, 2009,44:651-655.
[5] 李长志, 李欢, 刘庆, 史衍玺. 不同生长时期干旱胁迫甘薯根系生长及荧光生理的特性比较. 植物营养与肥料学报, 2016,22:511-517.
Li C Z, Li H, Liu Q, Shi Y X. Comparison of root development and fluorescent physiological characteristics of sweet potato exposure to drought stress in different growth stages. J Plant Nutr Fert, 2016,22:511-517 (in Chinese with English abstract).
[6] 杨阳, 申双和, 马绎皓, 王润元, 赵鸿. 干旱对作物生长的影响机制及抗旱技术的研究进展. 科技通报, 2020,36(1):8-15.
Yang Y, Shen S H, Ma Y H, Wang R Y, Zhao H. Advances in the effects of drought on crop growth and research on drought resistance techniques. Bull Sci Technol, 2020,36(1):8-15 (in Chinese with English abstract).
[7] 王一鸣, 汪湖, 龙胜举, 赵英鹏, 陈延, 贺忠群. 干旱胁迫对蒲公英渗透调节物质、酶保护系统及质膜水孔蛋白PIP2-3基因表达的影响. 华北农学报, 2017,32(4):85-90.
Wang Y M, Wang H, Long S J, Zhao Y P, Chen Y, He Z Q. Effects of drought stress on osmoregulation substances, enzyme protection system and expression of plasma membrane hole protein gene PIP2-3 in Taraxacum mongolicum Hand.-Mazz. Acta Agric Boreali-Sin, 2017,32(4):85-90 (in Chinese with English abstract).
[8] 蔡昆争, 吴学祝, 骆世明. 不同生育期水分胁迫对水稻根叶渗透调节物质变化的影响. 植物生态学报, 2008,32:491-500.
doi: 10.3773/j.issn.1005-264x.2008.02.029
Cai K Z, Wu X Z, Luo S M. Effects of water stress on osmolytes at different growth stage in rice leaves and roots. J Plant Ecol, 2008,32:491-500 (in Chinese with English abstract).
[9] 李春香, 王玮, 李德全. 长期水分胁迫对小麦生育中后期根叶渗透调节能力、渗透调节物质的影响. 西北植物学报, 2001,21:924-930.
Li C X, Wang W, Li D Q. Effects of long-term water stress on osmotic adjustment and osmolytes in wheat roots and leaves. Acta Bot Boreali-Occident Sin, 2001,21:924-930 (in Chinese with English abstract).
[10] 张明生, 彭忠华, 谢波, 谈锋, 张启堂, 付玉凡, 杨春贤, 杨永华. 甘薯离体叶片失水速率及渗透调节物质与品种抗旱性的关系. 中国农业科学, 2004,37:152-156.
Zhang M S, Peng Z H, Xie B, Tan F, Zhang Q T, Fu Y F, Yang C X, Yang Y H. Relationship between water loss rate of cutting leaves and osmotic regulators under water stress and drought resistance in sweet potato. Sci Agric Sin, 2004,37:152-156 (in Chinese with English abstract).
[11] 张明生, 谈锋, 张启堂. 快速鉴定甘薯品种抗旱性的生理指标及方法的筛选. 中国农业科学, 2001,34:260-265.
Zhang M S, Tan F, Zhang Q T. Physiological indices for rapid identification of sweet potato drought resistance and selection of methods. Sci Agric Sin, 2001,34:260-265 (in Chinese with English abstract).
[12] Aroca R, Irigoyen J J, Sánchez-díaz M. Drought enhances maize chilling tolerance: II. Photosynthetic traits and protective mechanisms against oxidative stress. Physiol Plant, 2003,117:540-549.
doi: 10.1034/j.1399-3054.2003.00065.x pmid: 12675744
[13] Babita M, Maheswari M, Rao L M, Shanker A K, Rao D G. Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.) hybrids. Environ Exp Bot, 2010,69:243-249.
doi: 10.1016/j.envexpbot.2010.05.006
[14] Yousifi N, Slama I, Ghnaya T, Savoure A, Abdelly C. Effects of water deficit stress on growth, water relations and osmolyte accumulation in Medicago truncatula and M. laciniata populations. C R Biol, 2010,333:205-213.
pmid: 20338538
[15] 曹清河, 李雪华, 戴习彬, 唐君, 周志林, 赵冬兰, 张安. PEG-6000模拟干旱胁迫对甘薯近缘野生种Ipomoea trifida (Kunth) G. Don幼苗生理生化指标的影响. 西南农业学报, 2016,29:2536-2541.
Cao Q H, Li X H, Dai X B, Tang J, Zhou Z L, Zhao D L, Zhang A. Effects of drought simulated by PEG-6000 on seedling physiological and biochemical indexes of wild sweetpotato relative Ipomoea trifida (Kunth) G. Don. Southwest Chin J Agric Sci, 2016,29:2536-2541 (in Chinese with English abstract).
[16] 储凤丽, 刘亚军, 王文静, 胡启国, 杨爱梅. 干旱胁迫对甘薯活性氧代谢、渗透调节物质、SPAD及叶绿素荧光特性的影响. 中国农学通报, 2019,35(26):29-34.
Chu F L, Liu Y J, Wang W J, Hu Q G, Yang A M. Effects of drought stress on active oxygen metabolism, osmotic regulators, SPAD and chlorophyll fluorescence characteristics of sweet potato. Chin Agric Sci Bull, 2019,35(26):29-34 (in Chinese with English abstract).
[17] 杜伟莉, 高杰, 胡富亮, 郭德林, 张改生, 张仁和, 薛吉全. 玉米叶片光合作用和渗透调节对干旱胁迫的响应. 作物学报, 2013,39:530-536.
doi: 10.3724/SP.J.1006.2013.00530
Du W L, Gao J, Hu F L, Guo D L, Zhang G S, Zhang R H, Xue J Q. Responses of drought stress on photosynthetic trait and osmotic adjustment in two maize cultivars. Acta Agron Sin, 2013,39:530-536 (in Chinese with English abstract).
[18] 丁成伟, 钮福祥, 郭小丁, 华希新. 甘薯品种资源抗旱性鉴定研究. 河南农业科学, 1997, (10):3-5.
Ding C W, Niu F X, Guo X D, Hua X X. Identification on the drought resistance in sweet potato genetic resource. Henan Agric Sci, 1997, (10):3-5 (in Chinese with English abstract).
[19] 张明生, 谈峰, 张启堂. 快速鉴定甘薯品种抗旱性的生理指标及PEG浓度的筛选. 西南师范大学学报(自然科学版), 1999,24(1):73-80.
Zhang M S, Tan F, Zhang Q T. Physiological indices of rapid identification for sweet potato drought-resistance and selection of PEG concentration. J Southwest China Nor Univ (Nat Sci Edn), 1999,24(1):73-80 (in Chinese with English abstract).
[20] 江苏省农业科学院, 山东省农业科学院. 中国甘薯栽培学. 上海: 上海科学技术出版社, 1984. pp 51-56.
Jiangsu Academy of Agricultural Sciences, Shandong Academy of Agricultural Sciences. Chinese Sweetpotato Cultivation. Shanghai: Shanghai Scientific and Technical Publishers, 1984. pp 51-56(in Chinese).
[21] 梁鹏, 邢兴华, 周琴, 韩亮亮, 田一丹, 张国正, 邢邯, 江海东. α-萘乙酸对干旱和复水处理下大豆幼苗生长和光合作用的影响. 大豆科学, 2011,30:50-55.
Liang P, Xing X H, Zhou Q, Han L L, Tian Y D, Zhang G Z, Xing H, Jiang H D. Effect of NAA on growth and photosynthetic characteristic of soybean seedling under drought and re-watering. Soybean Sci, 2011,30:50-55 (in Chinese with English abstract).
[22] 陈建勋, 王晓峰. 植物生理学实验指导(第2版). 广州: 华南理工大学出版社, 2006. pp 64-66.
Chen J X, Wang X F. Guidance of Plant Physiological Experiment 2nd edn. Guangzhou: South China University of Technology Publishers, 2006. pp 64-66(in Chinese).
[23] Lewthwaite S L, Triggs C M. Sweetpotato cultivar response to prolonged drought. Agron New Zeal, 2012,42:1-10.
[24] 张海燕, 解备涛, 汪宝卿, 董顺旭, 段文学, 张立明. 不同甘薯品种抗旱性评价及耐旱指标筛选. 作物学报, 2019,45:419-430.
Zhang H Y, Xie B T, Wang B Q, Dong S X, Duan W X, Zhang L M. Evaluation of drought tolerance and screening for drought-tolerant indicators in sweetpotato cultivars. Acta Agron Sin, 2019,45:419-430 (in Chinese with English abstract).
[25] Sokoto M B, Sadiq K A. Productivity of sweet potato ( Ipomoea batatas L.) as influenced by water stress and variety in Sokoto Sudan Savannah, Nigeria. Int J Plant Soil Sci, 2016,12:1-9.
[26] 李欢, 陈雷, 王晨静, 赵习武, 陆国权. 4个观赏甘薯品种的抗旱性比较. 浙江农业学报, 2015,27:1945-1952.
Li H, Chen L, Wang C J, Zhao X W, Lu G Q. Evaluation of the drought tolerance of four ornamental sweetpotato cultivars. Acta Agric Zhejiang, 2015,27:1945-1952 (in Chinese with English abstract).
[27] 张海燕, 段文学, 董顺旭, 解备涛, 汪宝卿, 张立明. 苗期干旱胁迫条件下外源ABA对甘薯膜透性和抗氧化酶系统的影响. 华北农学报, 2018,33(2):177-187.
Zhang H Y, Duan W X, Dong S X, Xie B T, Wang B Q, Zhang L M. Effects of exogenous abscisic acid on membrane permeability and antioxidant system of sweetpotato at seedlings Stage under drought stress. Acta Agric Boreali-Sin, 2018,33(2):177-187 (in Chinese with English abstract).
[28] 吴巧玉, 何天久, 夏锦慧. 干旱胁迫对甘薯生理特性的影响. 贵州农业科学, 2013,41(6):52-54.
Wu Q Y, He T J, Xia J H. Effects of drought stress on physiological characteristics of sweet potato. Guizhou Agric Sci, 2013,41(6):52-54 (in Chinese with English abstract).
[29] 霍红, 张勇, 陈年来, 李彩霞, 高海宁. 干旱胁迫下五种荒漠灌木苗期的生理响应和抗旱评价. 干旱区资源与环境, 2010,25(1):185-189.
Huo H, Zhang Y, Chen N L, Li C X, Gao H N. Physiological response and evaluation of drought resistance about five desert shrubs under drought stress. J Arid Land Resour Environ, 2010,25(1):185-189 (in Chinese with English abstract).
[30] 许育彬, 程雯蔚, 陈越, 华千勇. 不同施肥条件下干旱对甘薯生长发育和光合作用的影响. 西北农业学报, 2007,16(2):59-64.
Xu Y B, Cheng W W, Chen Y, Hua Q Y. Effect of drought on growth and development and photosynthesis of sweet potato under different fertilization conditions. Acta Agric Boreali-Occident Sin, 2007,16(2):59-64 (in Chinese with English abstract).
[31] 孙哲, 史春余, 刘桂玲, 高俊杰, 柳洪鹃, 郑建利, 张鹏. 干旱胁迫与正常供水钾肥影响甘薯光合特性及块根产量的差异. 植物营养与肥料学报, 2016,22:1071-1078.
Sun Z, Shi C Y, Liu G L, Gao J J, Liu H J, Zheng J L, Zhang P. Effect difference of potassium fertilizer on leaf photosynthetic characteristics and storage root yield of sweet potato under drought stress and normal water condition. J Plant Nutr Fert, 2016,22:1071-1078 (in Chinese with English abstract).
[32] 张海燕, 解备涛, 段文学, 董顺旭, 汪宝卿, 张立明, 史春余. 不同时期干旱胁迫对甘薯光合效率和耗水特性的影响. 应用生态学报, 2018,29:1943-1950.
Zhang H Y, Xie B T, Duan W X, Dong S X, Wang B Q, Zhang L M, Shi C Y. Effects of drought stress at different growth stages on photosynthetic efficiency and water consumption characteristics in sweet potato. Chin J Appl Ecol, 2018,29:1943-1950 (in Chinese with English abstract).
[33] 张明生, 谢波, 戚金亮, 谈锋, 张启堂, 杨永华. 甘薯植株形态、生长势和产量与品种抗旱性的关系. 热带作物学报, 2006,27(1):39-43.
Zhang M S, Xie B, Qi J L, Tan F, Zhang Q T, Yang Y H. Relationship of drought resistance of sweet potato with its plant type, growth vigour and yield under water stress. Chin J Trop Crops, 2006,27(1):39-43 (in Chinese with English abstract).
[34] 姜慧芳, 任小平. 干旱胁迫对花生叶片SOD活性和蛋白质的影响. 作物学报, 2004,30:169-174.
Jiang H F, Ren X P. The effect on SOD activity and protein content in groundnut leaves by drought stress. Acta Agron Sin, 2004,30:169-174 (in Chinese with English abstract).
[35] 张智猛, 宋文武, 丁红, 慈敦伟, 康涛, 宁堂原, 戴良香. 不同生育期花生渗透调节物质含量和抗氧化酶活性对土壤水分的响应. 生态学报, 2013,33:4257-4265.
doi: 10.5846/stxb201204100499
Zhang Z M, Song W W, Ding H, Ci D W, Kang T, Ning T Y, Dai L X. The responses of leaf osmoregulation substance and protective enzyme activity of different peanut cultivars to non-sufficient irrigation. Acta Ecol Sin, 2013,33:4257-4265 (in Chinese with English abstract).
[36] Mbinda W, Ombori O, Dixelius C, Oduor R. Xerophyta viscosa aldose reductase, XvAld1, enhances drought tolerance in transgenic sweetpotato. Mol Biotechnol, 2018,60:203-214.
pmid: 29423655
[37] Fan W J, Zhang M, Zhang H X, Zhang P. Improved tolerance to various abiotic stresses in transgenic sweet potato ( Ipomoea batatas) expressing betaine aldehyde dehydrogenase. PLoS One, 2012,7:e37344.
pmid: 22615986
[1] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[2] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[3] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[4] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[5] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[6] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[7] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[8] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[9] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[10] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[11] 周练, 刘朝显, 熊雨涵, 周京, 蔡一林. 质膜内在蛋白ZmPIP1;1参与玉米耐旱性和光合作用的功能分析[J]. 作物学报, 2021, 47(3): 472-480.
[12] 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319.
[13] 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439.
[14] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
[15] 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!