作物学报 ›› 2020, Vol. 46 ›› Issue (9): 1312-1321.doi: 10.3724/SP.J.1006.2020.04019
王珍(), 姚梦楠(), 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖*()
WANG Zhen(), YAO Meng-Nan(), ZHANG Xiao-Li, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying*()
摘要:
植物的丝裂原活化蛋白激酶(Mitogen-Activated Protein Kinases, MAPKs)级联是生长进程中多种信号跨膜传递的共同通路, 它可以将外源刺激转入细胞内并引发细胞应答。目前C族MAPKs在甘蓝型油菜中的研究报道还很有限。本研究通过1个甘蓝型油菜的C族BnMAPK1基因的生物学进程聚类分析发现, BnMAPK1可能参与蛋白磷酸化、生长素介导的信号途径、逆境应答、细胞周期及转录等过程。BnMAPK1具有369个氨基酸残基, 其相对分子质量约为42.5 kD, 其可溶性蛋白可在原核系统中被诱导表达。BnMAPK1的亚细胞定位结果显示, BnMAPK1主要在细胞核内表达。Bait质粒pGBKT7-BnMAPK1在酵母双杂交系统中无毒性及自激活活性。为深入研究BnMAPK1蛋白参与的生物学进程, 从甘蓝型油菜中油821苗期根、茎、叶中分别提取总RNA, 分离得到mRNA, 利用SMART技术合成并纯化双链cDNA后建立甘蓝型油菜混合cDNA文库。以共转化法筛选与BnMAPK1相互作用的蛋白, 对其分析与鉴定显示, BnMAPK1在生长发育、非生物及生物逆境、转录、蛋白合成及代谢、翻译及翻译后修饰等过程中起作用。研究结果为MAPKs级联, 尤其是C族MAPKs的研究提供了新的视野, 为甘蓝型油菜抗性的机理研究及分子育种奠定了重要的理论依据。
[1] |
Cai G, Yang Q, Chen H, Yang Q, Zhang C, Fan C, Zhou Y. Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep, 2016,6:21625. doi: 10.1038/srep 21625.
doi: 10.1038/srep21625 pmid: 26880301 |
[2] | 王汉中. 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010,32:300-302. |
Wang H Z. Review and future development of rapeseed industry in China. Chin J Oil Crop Sci, 2010,32:300-302 (in Chinese with English abstract). | |
[3] | 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019,41:485-489. |
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019,41:485-489 (in Chinese with English abstract). | |
[4] | 李争. 中国油菜生产技术供需的经济学分析. 华中农业大学博士学位论文, 湖北武汉, 2011. |
Li Z. Economic Analysis of Supply and Demand in Rape Production Technology in China. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2011 (in Chinese with English abstract). | |
[5] |
Kelkar N, Gupta S, Dickens M, Davis R J. Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3. Mol Cell Biol, 2000,20:1030-1043.
doi: 10.1128/mcb.20.3.1030-1043.2000 pmid: 10629060 |
[6] |
Hamel L P, Nicole M C, Duplessis S, Ellis B E. Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell, 2012,24:1327-1351.
doi: 10.1105/tpc.112.096156 pmid: 22517321 |
[7] |
Fiil B K, Petersen K, Petersen M, Mundy J. Gene regulation by MAP kinase cascades. Curr Opin Plant Biol, 2009,12:615-621.
doi: 10.1016/j.pbi.2009.07.017 pmid: 19716758 |
[8] |
Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J, 2008,413:217-226.
doi: 10.1042/BJ20080625 pmid: 18570633 |
[9] |
Ortiz-Masia D, Perez-Amador M A, Carbonell J, Marcote M J. Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis. FEBS Lett, 2007,581:1834-1840.
pmid: 17433310 |
[10] |
Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S, Hirt H, Wilson C, Bors E H, Ellis B E, Morris P C, Innes R W, Ecker J R, Scheel D, Klessig D F, Machida Y, Mundy J, Ohashi Y, Walker J C. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 2002,7:301-308.
doi: 10.1016/s1360-1385(02)02302-6 pmid: 12119167 |
[11] |
Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi- Shinozaki K, Matsumoto K, Shinozaki K. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA, 1996,93:765-769.
doi: 10.1073/pnas.93.2.765 pmid: 8570631 |
[12] |
Umezawa T, Sugiyama N, Takahashi F, Anderson J C, Ishihama Y, Peck S C, Shinozaki K. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci Signal, 2013, 6: rs8.
doi: 10.1126/scisignal.2004651 pmid: 24194583 |
[13] |
Danquah A, Zelicourt A, Boudsocq M, Neubauer J, Frey N F, Leonhardt N, Pateyron S, Gwinner F, Tamby J P, Ortiz-Masia D, Marcote M J, Hirt H, Colcombet J. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. Plant J, 2015,82:232-244.
pmid: 25720833 |
[14] |
Danquah A, Zelicourt A, Colcombet J, Hirt H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv, 2014,32:40-52.
doi: 10.1016/j.biotechadv.2013.09.006 pmid: 24091291 |
[15] |
Chardin C, Krapp A, Schenk S T, Hirt H, Colcombet J. Review: mitogen-activated protein kinases in nutritional signaling in Arabidopsis. Plant Sci, 2017,260:101-108.
doi: 10.1016/j.plantsci.2017.04.006 pmid: 28554467 |
[16] |
Enders T A, Frick E M, Strader L C. An Arabidopsis kinase cascade influences auxin-responsive cell expansion. Plant J, 2017,92:68-81.
doi: 10.1111/tpj.13635 pmid: 28710770 |
[17] |
Ghawana S, Kumar S, Ahuja P S. Early low-temperature responsive mitogen activated protein kinases RaMPK1 and RaMPK2 from Rheum australe D. Don respond differentially to diverse stresses. Mol Biol Rep, 2010,37:933-938.
pmid: 19688272 |
[18] | Blanco F A, Zanetti M E, Casalongue CA, Daleo G R. Molecular characterization of a potato MAP kinase transcriptionally regulated by multiple environmental stresses. lant Physiol Biochem, 2006,44:315-322. |
[19] |
Liang W, Yang B, Yu B J, Zhou Z, Li C, Jia M, Sun Y, Zhang Y, Wu F, Zhang H, Wang B, Deyholos M, Jiang Y Q. Identification and analysis of MKK and MPK gene families in canola (Brassica napus L.). BMC Genomics, 2013,14:392.
pmid: 23758924 |
[20] | 陆俊杏, 卢坤, 朱斌, 彭茜, 陆奇丰, 曲存民, 殷家明, 李加纳, 梁颖, 柴友荣. 芸薹属物种(B. napus, B. oleracea, B. rapa) MAPK1家族的克隆、进化和表达特征. 中国农业科学, 2013,46:3478-3487. |
Lu J X, Lu K, Zhu B, Peng Q, Lu Q F, Qu C M, Yin J M, Li J N, Liang Y, Chai Y R. Cloning, evolution and expression features of MAPK1 gene family from Brassica species (B. napus, B.oleracea, B. rapa). Sci Agric Sin, 2013,46:3478-3487 (in Chinese with English abstract). | |
[21] | 陆俊杏, 陆奇丰, 张凯, 柴友荣, 李加纳, 钱伟, 吕俊, 卢坤, 梁颖. 甘蓝型油菜MAPK1在损伤和病原菌胁迫下的表达模式分析. 中国农业科学, 2013,46:4388-4396. |
Lu J X, Lu Q F, Zhang K, Chai Y R, Li J N, Qian W, Lyu J, Lu K, Liang Y. Expression features of BnMAPK1 in wound and pathogentic fungi stress. Sci Agric Sin, 2013,46:4388-4396 (in Chinese with English abstract). | |
[22] | 王淑文, 陆俊杏, 万华方, 翁昌梅, 王珍, 李加纳, 卢坤, 梁颖. BnMAPK1超量表达提高甘蓝型油菜菌核病抗性. 作物学报, 2014,40:745-750. |
Wang S W, Lu J X, Wan H F, Weng C M, Wang Z, Li J N, Lu K, Liang Y. Overexpression of BnMAPK1 enhances resistance to Sclerotinia sclerotiorum in Brassica napus. Acta Agron Sin, 2014,40:745-750 (in Chinese with English abstract). | |
[23] | Weng C M, Lu J X, Wan H F, Wang S W, Wang Z, Lu K, Liang Y. Over-expression of BnMAPK1 in Brassica napus enhances tolerance to drought stress. J Integr Agric, 2013,13:2407-2415. |
[24] | 靳义荣, 宋毓峰, 白岩, 张良, 董连红, 刘朝科, 冯祥国, 胡晓明, 王倩, 刘好宝. 林烟草钾离子通道基因NKT6的克隆与表达定位分析. 作物学报, 2013,39:1602-1611. |
Jin Y R, Song Y F, Bai Y, Zhang L, Dong L H, Liu C K, Feng X G, Hu X M, Wang Q, Liu H B. Molecular cloning and expression analysis of potassium channel gene NKT6 in Nicotiana sylvestris. Acta Agron Sin, 2013,39:1602-1611 (in Chinese with English abstract). | |
[25] |
Dóczi R, Brader G, Pettkó-Szandtner A, Rajh I, Djamei A, Pitzschke A, Teige M, Hirt H. The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen- activated protein kinases and participates in pathogen signaling. Plant Cell, 2007,19:3266-3279.
doi: 10.1105/tpc.106.050039 pmid: 17933903 |
[26] |
Pitzschke A. Modes of MAPK substrate recognition and control. Trends Plant Sci, 2015,20:49-55.
pmid: 25301445 |
[27] |
Zhang M, Su J, Zhang Y, Xu J, Zhang S. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr Opin Plant Biol, 2018,45:1-10.
doi: 10.1016/j.pbi.2018.04.012 pmid: 29753266 |
[28] | 潘教文, 李德全. 植物MAPK信号转导组分的细胞定位与选择性剪接. 中国生物化学与分子生物学报, 2010,26:393-400. |
Pan J W, Li D Q. Cellular localization of components of mitogen-activated protein kinase (MAPK) cascades and alternative splicing. Chin J Biochem Mol Biol, 2010,26:393-400 (in Chinese with English abstract). | |
[29] |
Brunet A, Roux D, Lenormand P, Dowd S, Keyse S, Pouyssegur J. Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J, 1999,18:664-674.
pmid: 9927426 |
[30] |
Furuno T, Hirashima N, Onizawa S, Sagiya N, Nakanishi M. Nuclear shuttling of mitogen-activated protein (MAP) kinase (extracellular signal-regulated kinase (ERK) 2) was dynamically controlled by MAP/ERK kinase after antigen stimulation in RBL-2H3 cells. J Immunol, 2001,166:4416-4421.
doi: 10.4049/jimmunol.166.7.4416 pmid: 11254696 |
[31] |
Yoo S D, Cho Y H, Tena G, Xiong Y, Sheen J. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signaling. Nature, 2008,451:789-795.
pmid: 18273012 |
[32] |
Ahlfors R, Maccioszek V, Rudd J, Brosche M, Schlichting R, Scheel D, Kangasjarvi J. Stress hormone independent activation and nuclear translocation of mitogen activated protein kinases in Arabidopsis thaliana during ozone exposure. Plant J, 2004,40:512-522.
doi: 10.1111/j.1365-313X.2004.02229.x pmid: 15500467 |
[33] |
Neill S, Desikan R, Hancock J. Hydrogen peroxide signalling. Curr Opin Plant Biol, 2002,5:388-395.
doi: 10.1016/s1369-5266(02)00282-0 pmid: 12183176 |
[34] |
Popescu S, Popescu G, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar S P. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev, 2009,23:80-92.
pmid: 19095804 |
[35] |
Andreasson E, Ellis B. Convergence and specificity in the Arabidopsis MAPK nexus. Trends Plant Sci, 2010,15:106-113.
doi: 10.1016/j.tplants.2009.12.001 pmid: 20047850 |
[36] |
Taj G, Agarwal P, Grant M, Kumar A. MAPK machinery in plants. Plant Signal Behav, 2010,5:1370-1378.
doi: 10.4161/psb.5.11.13020 pmid: 20980831 |
[37] |
Zhang S, Klessig D F. MAPK cascades in plant defense signaling. Trends Plant Sci, 2001,6:520-527.
doi: 10.1016/s1360-1385(01)02103-3 pmid: 11701380 |
[38] |
Xu Y H, Liu R, Yan L, Liu Z Q, Jiang S C, Shen Y Y, Wang X F, Zhang D P. Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. J Exp Bot, 2012,63:1095-1106.
doi: 10.1093/jxb/err315 pmid: 22143917 |
[39] |
Kline K G, Barrett-Wilt G A, Sussman M R. In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. Proc Natl Acad Sci USA, 2010,107:15986-15991.
pmid: 20733066 |
[40] |
Liu J, Jia C, Dong F, Wang J, Zhang J, Xu Y, Xu B, Jin Z. Isolation of an abscisic acid senescence and ripening inducible gene from litchi and functional characterization under water stress. Planta, 2013,237:1025-1036.
doi: 10.1007/s00425-012-1820-x |
[41] |
Kiyosue T, Abe H, Yamaguchi-Shinozaki K, Shinozaki K. ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transporter. Biochim Biophys Acta, 1998,1370:187-191.
doi: 10.1016/s0005-2736(98)00007-8 pmid: 9545564 |
[42] |
Xiong L, Lee H, Ishitani M, Zhu J K. Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J Biol Chem, 2002,277:8588-8596.
doi: 10.1074/jbc.M109275200 pmid: 11779861 |
[43] |
Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002,14:S165.
doi: 10.1105/tpc.000596 pmid: 12045276 |
[44] |
Jeong J S, Jung C, Seo J S, Kim J K, Chua N H. The deubiquitinating enzymes UBP12 and UBP13 positively regulate MYC2 levels in jasmonate responses. Plant Cell, 2017,29:1406-1424.
doi: 10.1105/tpc.17.00216 pmid: 28536144 |
[45] |
Goossens J, Swinnen G, Vanden B R, Pauwels L, Goossens A. Change of a conserved amino acid in the MYC2 and MYC3 transcription factors leads to release of JAZ repression and increased activity. New Phytol, 2015,206:1229-1237.
doi: 10.1111/nph.13398 pmid: 25817565 |
[46] |
Liu W, Li R J, Han T T, Cai W, Fu Z W, Lu Y T. Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiol, 2015: 168:343-356.
doi: 10.1104/pp.15.00030 pmid: 25818700 |
[47] |
Shi H, Liu W, Wei Y, Ye T T. Integration of auxin/indole-3-acetic acid 17 and RGA-LIKE3 confers salt stress resistance through stabilization by nitric oxide in Arabidopsis. J Exp Bot, 2017,68:1239-1249.
doi: 10.1093/jxb/erw508 pmid: 28158805 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[4] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[5] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[6] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[7] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[8] | 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264. |
[9] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[10] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[11] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[12] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[13] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[14] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[15] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
|