欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (11): 2733-2748.doi: 10.3724/SP.J.1006.2022.14168

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

草棉不同倍性材料叶片转录组差异表达分析

杨亚杰(), 李昱樱, 申状状, 陈天, 荣二花, 吴玉香*()   

  1. 山西农业大学农学院, 山西晋中 030801
  • 收稿日期:2021-09-23 接受日期:2022-02-25 出版日期:2022-11-12 网络出版日期:2022-04-01
  • 通讯作者: 吴玉香
  • 作者简介:第一作者联系方式: E-mail: yyj15235924721@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(31171599);山西省基础研究计划项目(自由探索类)(20210302124154)

Differential expressed analysis by transcriptome sequencing in leaves of different ploidy Gossypium herbaceum

YANG Ya-Jie(), LI Yu-Ying, SHEN Zhuang-Zhuang, CHEN Tian, RONG Er-Hua, WU Yu-Xiang*()   

  1. College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
  • Received:2021-09-23 Accepted:2022-02-25 Published:2022-11-12 Published online:2022-04-01
  • Contact: WU Yu-Xiang
  • Supported by:
    The National Natural Science Foundation of China(31171599);The Shanxi Province Basic Research Program (Free Exploration)(20210302124154)

摘要:

通过转录组测序筛选草棉同源多倍体与二倍体相比差异表达基因, 为同源多倍体的表型变化及其染色体加倍过程中遗传物质的变化提供基因表达水平的依据。本研究以草棉二倍体(CK)和同源多倍体后代为材料, 通过流式细胞仪鉴定出同源三倍体(T)和同源四倍体(M)植株, 比较同源四倍体与二倍体的超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、脯氨酸和可溶性蛋白含量生理指标, 并进行转录组测序分析。草棉同源四倍体叶片的SOD、POD、CAT、脯氨酸和可溶性蛋白含量均显著高于二倍体。DESeq差异分析结果表明, CK vs T、T vs M、CK vs M分别有4166 (2832个上调, 1334个下调)、4037 (1766个上调, 2271个下调)、4184 (2679个上调, 1505个下调)个DEGs, 有205个DEGs是不同倍性植株两两比较的3组间共同表达的。GO功能分析表明, DEGs在膜的固有成分、膜的组成部分、催化活性等途径差异显著。KEGG富集分析表明, DEGs在类黄酮生物合成、苯丙烷生物合成、光合作用-天线蛋白等通路较为活跃。通过富集分析筛选CK vs T和CK vs M中与倍性相关的DEGs发现, 多倍体在应激反应(62.46%和54.84%)、逆境反应(57.42%和53.85%)、细胞(70.16%和66.22%)、代谢(72.73%和66.14%)、生物活性物质和抗性(60.33%和63.37%)、光合(58.06%和63.16%)等方面的差异基因大都是上调表达, 这可能是导致多倍体优势的关键因子。Nr注释信息CK vs M中共获得27个与抗性相关的基因(19个上调, 8个下调), 11个与光合相关的基因(9个上调, 2个下调)。对不同倍性草棉与光合相关的27个DEGs进行聚类分析发现, 18个(66.67%)基因在四倍体中表达丰度最高。对3组间共同表达的205个DEGs进行Nr注释和表达情况分析发现, 有30个基因都表现为上调表达, 且在四倍体中表达量最高, 7个基因都表现为下调表达, 且在四倍体中表达量最低, 这37个基因可能是受DNA剂量影响或是与植株倍性相关的基因。研究结果进一步表明多倍体植株在抗性、生长势、新陈代谢以及光合速率方面均优于二倍体。

关键词: 草棉, 同源多倍体, 流式细胞, 生理指标, 转录组测序, 差异表达基因(DEGs)

Abstract:

To investigate the basis for the relative expression level of genes between the phenotypic changes of autopolyploid and the changes of genetic material during chromosome doubling, the differentially expressed genes between autopolyploids and diploids were screened by transcriptome sequencing of G. herbaceum. In this study, the diploid G. herbaceum (CK) and autopolyploid progenies were used as materials, autotriploid (T) and autotetraploid (M) plants were identified by flow cytometry. After the physiological indexes of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), proline, and soluble protein contents of autotetraploids and diploids were compared, and transcriptome sequencing were analyzed. The contents of SOD, POD, CAT, proline, and soluble protein in the leaves of autotetraploids were significantly higher than those of diploids. DESeq difference analysis showed that there were 4166 (2832 up-regulated and 1334 down-regulated), 4037 (1766 up-regulated and 2271 down-regulated), and 4184 (2679 up-regulated and 1505 down-regulated) DEGs, in CK vs T, T vs M, and CK vs M, respectively, and 205 DEGs were common expressed among three groups of pairwise comparison of different ploidy plants. GO function revealed that DEGs had significant differences in intrinsic component of membrane, integral component of membrane, catalytic activity. KEGG enrichment indicated that DEGs was more active than other pathways in flavonoid biosynthesis, phenylpropane biosynthesis, and photosynthesis-antenna protein. Through enrichment analysis, the DEGs related to ploidy in CK vs T and CK vs M were screened, and the results demonstrated that polyploidy were detected mostly up-regulated, in response to stimulus (62.46% and 54.84%), stress (57.42% and 53.85%), cell (70.16% and 66.22%), metabolism (72.73% and 66.14%), biologically active substances and resistance (60.33% and 63.37%), photosynthesis (58.06% and 63.16%), which may be the key factor leading to polyploid advantage. A total of 27 resistance-related genes (19 up-regulated and 8 down-regulated) and 11 photosynthetic-related genes (9 up-regulated and 2 down-regulated) were obtained by Nr annotation CK vs M. Cluster analysis of 27 DEGs related to photosynthesis in different ploidy of G. herbaceum showed that the relative expression of 18 genes (66.67%) had the highest expression abundance in autotetraploids. We performed Nr annotation and expression analysis on 205 DEGs common expressed among three groups, indicating that 30 genes were up-regulated, and the relative expression was the highest in autotetraploids. While 7 genes were down-regulated, and the expression was the lowest in autotetraploids. The 37 genes may be influenced by DNA gene-dose or related to plant ploidy level. The results showed that polyploid plants are superior to diploid plants in terms of resistance, growth vigor, metabolism, and photosynthesis rate.

Key words: Gossypium herbaceum, autopolyploids, flow cytometry, physiological indexs, transcriptome sequencing, differentially expressed genes

表1

草棉同源多倍体后代的荧光峰值"

材料代号
Material code
平均荧光强度
X-mean
倍性
Ploidy
1 89.68 二倍体Diploid
2 139.51 三倍体Triploid
3 125.93 三倍体Triploid
4 135.29 三倍体Triploid
5 185.39 四倍体Tetraploid
6 181.19 四倍体Tetraploid
7 179.46 四倍体Tetraploid
8 178.46 四倍体Tetraploid
9 187.80 四倍体Tetraploid
10 157.11 三倍体-四倍体 Triploid-tetraploid
11 159.34 三倍体-四倍体 Triploid-tetraploid

表2

不同倍性草棉的净光合速率和叶绿素含量比较"

光合指标
Photosynthetic index
二倍体
Diploid
三倍体
Triploid
四倍体
Tetraploid
净光合速率Pn (μmol m-2 s-1) 13.07±0.89 c 15.40±0.73 b 19.15±0.86 a
相对叶绿素含量 SPAD 33.23±1.77 c 36.05±0.66 b 38.07±0.81 a

表3

草棉二倍体及其同源四倍体叶片不同生理指标对比"

材料
Material
SOD活性
SOD activity
(U g-1 min-1)
POD活性
POD activity
(U g-1 min-1)
CAT活性
CAT activity
(U g-1 min-1)
脯氨酸含量
Proline content
(μg g-1)
可溶性蛋白含量
Soluble sugar content
(mg g-1)
二倍体Diploid 138.96±4.10 76.22±7.90 9.33±0.67 8.14±0.23 8.70±0.55
同源四倍体Autotetraploid 186.14±10.86** 99.56±7.00* 17.22±2.36** 12.74±0.36** 14.92±0.35**

图1

不同倍性草棉的基因表达 CK: 二倍体; T: 三倍体: M: 四倍体。"

图2

不同倍性草棉两两比较的差异基因表达情况 缩写同图1。"

表4

CK vs M的差异表达基因功能分类"

功能分类
Functional
characterization
GO条目/代谢通路
GO term/pathway
上调基因数量
Number of up-regulated genes
下调基因数量
Number of down-regulated genes
差异表达
基因数量
Number of DEGs
FDR
抗逆性
Stress resistance
应激反应
Response to stimulus (GO:0050896)
153 (54.84%) 126 279 1
逆境反应
Response to stress (GO:0006950)
77 (53.85%) 66 143 1
细胞
Cell
细胞生长
Cell growth (GO:0016049)
16 (80.00%) 4 20 0.4033192
细胞周期
Cell cycle (GO:0007049)
43 (91.49%) 4 47 0.0009799
细胞壁
Cell wall (GO:0005618)
55 (83.33%) 11 66 6.599E-06
细胞壁组织及生物发生
Cell wall organization or biogenesis (GO:0071554)
82 (82.83%) 17 99 4.835E-07
细胞器
Organelle (GO:0043226)
371 (64.63%) 203 574 1
生物调节
Biological regulation (GO:0065007)
255 (56.79%) 194 449 1
细胞过程
Cellular process (GO:0009987)
926 (63.21%) 539 1465 1
细胞膜
Membrane (GO:0016020)
920 (70.28%) 389 1309 4.826E-10
代谢
Metabolism
碳水化合物代谢
Carbohydrate metabolism (-)
140 (64.81%) 76 216 0.6612823
氨基酸代谢
Amino acid metabolism (-)
80 (62.50%) 48 128 0.5819777
核苷酸代谢
Nucleotide metabolism (-)
22 (66.67%) 11 33 0.5692334
脂质代谢
Lipid metabolism (-)
96 (71.64%) 38 134 0.4141365
活性物质和抗性
Active substances and resistance
苯丙烷生物合成
Phenylpropanoid biosynthesis (ko00940)
33 (78.57%) 9 42 0.0492074
黄酮和黄酮醇生物合成
Flavone and flavonol biosynthesis (ko00944)
2 (100%) 0 2 0.1934463
类黄酮生物合成
Flavonoid biosynthesis (ko00941)
19 (100%) 0 19 0.0007179
功能分类
Functional
characterization
GO条目/代谢通路
GO term/pathway
上调基因数量
Number of up-regulated genes
下调基因数量
Number of down-regulated genes
差异表达
基因数量
Number of DEGs
FDR
活性物质和抗性
Active substances and resistance
单萜生物合成
Monoterpenoid biosynthesis (ko00902)
2 (66.67%) 1 3 0.3228966
单萜生物合成
Monoterpenoid biosynthesis (ko00902)
2 (66.67%) 1 3 0.3228966
二萜生物合成
Diterpenoid biosynthesis (ko00904)
5 (71.43%) 2 7 0.4795232
倍半萜和三萜生物合成
Sesquiterpenoid and triterpenoid biosynthesis (ko00909)
6 (85.71%) 1 7 0.1255444
萜类主链生物合成
Terpenoid backbone biosynthesis (ko00900)
6 (85.71%) 1 7 1
过氧化物酶体
Peroxisome (ko04146)
4 (33.33%) 8 12 1
半胱氨酸和蛋氨酸代谢
Cysteine and methionine metabolism (ko00270)
14 (66.67%) 7 21 0.4112855
植物-病原相互作用
Plant-pathogen interaction (ko04626)
15 (42.86%) 20 35 0.9309574
MAPK信号通路-植物
MAPK signaling pathway-plant (ko04016)
14 (45.16%) 17 31 0.4434954
植物激素信号转导
Plant hormone signal transduction (ko04075)
34 (59.65%) 23 57 0.4795232
光合
Photosynthesis
光合作用-天线蛋白
Photosynthesis-antenna proteins (ko00196)
10 (100%) 0 10 0.034253
类胡萝卜素生物合成
Carotenoid biosynthesis (ko00906)
1 (16.67%) 5 6 0.6849565
卟啉与叶绿素代谢
Porphyrin and chlorophyll metabolism (ko00860)
3 (100%) 0 3 1
光合合成碳的固定
Carbon fixation in photosynthetic organisms (ko00710)
5 (45.45%) 6 11 1
光合作用
Photosynthesis (ko00195)
5 (62.50%) 3 8 1

表5

CK vs M部分抗性及光合相关差异表达基因"

分类
Classify
代谢通路
Pathway
基因ID
Gene ID
Nr 注释
Nr annotation
FDR
抗性
Resistance
MAPK信号通路-植物
MAPK signaling
pathway-plant
gene-LOC108472111↑ EIN3结合F-box 1-样蛋白
EIN3-binding F-box 1-like protein
0.011587493
gene-LOC108453563↑ EIN3结合F-box 1-样蛋白
EIN3-binding F-box 1-like protein
0.044251564
gene-LOC108467504↑ 蛋白磷酸酶2C 77-样蛋白
Protein phosphatase 2C 77-like protein
0.014589885
gene-LOC108478294↑ 丝裂原活化蛋白激酶9
Mitogen-activated protein kinase kinase 9
0.0008591
gene-LOC108457272↑ 乙烯受体2-样蛋白
Ethylene receptor 2-like protein
0.024368941
gene-LOC108476169↑ 内切几丁质酶1 Endochitinase 1 0.215277812
gene-LOC108483169↓ 乙烯受体Ethylene receptor 0.000750193
gene-LOC108463936↓ 丝裂原活化蛋白激酶17
Mitogen-activated protein kinase 17
0.016328221
gene-LOC108450183↓ 丝裂原活化蛋白激酶3
Mitogen-activated protein kinase 3
0.233022156
植物激素信号转导
Plant hormone signal
transduction
gene-LOC108484000↑ DELLA蛋白DWARF8-类
DELLA protein DWARF8-like
0.077283861
gene-LOC108472111↑ EIN3结合F-box 1-样蛋白
EIN3-binding F-box 1-like protein
0.011587493
gene-LOC108450344↑ 生长素反应基因IAA27-样蛋白
Auxin-responsive IAA27-like protein
0.006431987
gene-LOC108482284↑ 蛋白TIFY 9-样蛋白
Protein TIFY 9-like protein
0.003835613
gene-LOC108467504↑ 蛋白磷酸酶2C 77-样蛋白
Protein phosphatase 2C 77-like protein
0.014589885
gene-LOC108470619↑ 生长素诱导的AUX28
Auxin-induced AUX28
2.81365E-06
gene-LOC108466602↑ 细胞周期蛋白D3-2-样蛋白
Cyclin-D3-2-like protein
0.134508825
gene-LOC108453563↑ EIN3结合F-box 1-样蛋白
EIN3-binding F-box 1-like protein
0.044251564
gene-LOC108461714↑ 双组分反应调节剂ARR12-样蛋白
Two-component response regulator ARR12-like
protein
0.170570504
gene-LOC108485375↑ 对脱落酸不敏感的5-样蛋白4
Abscisic acid-insensitive 5-like protein 4
0.002462993
gene-LOC108469335↑ 生长素反应基因IAA30-样蛋白
Auxin-responsive IAA30-like protein
0.1026197
gene-LOC108457272↑ 乙烯受体2-样蛋白
Ethylene receptor 2-like protein
0.024368941
抗性
Resistance
植物激素信号转导
Plant hormone signal
transduction
gene-LOC108457634↑ 生长素反应基因IAA9-样蛋白
Auxin-responsive IAA9-like protein
0.211599147
gene-LOC108451896↓ IAA16蛋白IAA16 protein 0.01579825
gene-LOC108457881↓ 转录因子PIF3 Transcription factor PIF3 0.013753921
gene-LOC108488454↓ 双组分反应调节剂ARR9-样蛋白
Two-component response regulator ARR9-like protein
0.041768036
gene-LOC108456238↓ 调节剂NPR5-样蛋白
Regulatory NPR5-like protein
0.02941149
gene-LOC108474109↓ 转录因子PIF3-样蛋白
Transcription factor PIF3-like protein
6.26018E-05
光合
Photosynthesis
光合作用-天线蛋白
Photosynthesis-antenna proteins
gene-LOC108480333↑ 叶绿素a-b结合13, 叶绿体
Chlorophyll a-b binding 13, chloroplastic
0.002356614
gene-LOC108476043↑ 叶绿素a-b结合CP24 10A, 叶绿体
Chlorophyll a-b binding CP24 10A, chloroplastic
0.000187662
gene-LOC108489181↑ LHCII型叶绿素a-b结合蛋白-类
Chlorophyll a-b binding protein of LHCII type 1-like
1.58539E-05
类胡萝卜素生物合成
Carotenoid biosynthesis
gene-LOC108469787↑ 八氢番茄红素合成酶Phytoene synthase 1.59539E-05
gene-LOC108461129↓ Zeta胡萝卜素去饱和酶, 叶绿体
Zeta-carotene desaturase, chloroplastic/chromoplastic
0.000454432
卟啉与叶绿素代谢
Porphyrin and chlorophyll metabolism
gene-LOC108450311↑ 原叶绿素还原酶, 叶绿体
Protochlorophyllide reductase, chloroplastic
0.000599834
gene-LOC108461585↑ 原叶绿素还原酶, 叶绿体
Protochlorophyllide reductase, chloroplastic
0.004268314
光合合成碳的固定
Carbon fixation in
photosynthetic organisms
gene-LOC108483247↑ 磷酸烯醇式丙酮酸羧化酶
Phosphoenolpyruvate carboxylase, housekeeping isozyme
0.003229881
gene-LOC108453781↑ 果糖二磷酸醛缩酶, 细胞质同工酶
Fructose-bisphosphate aldolase, cytoplasmic isozyme
0.097210442
光合作用
Photosynthesis
gene-LOC108488482↑ 光系统I反应中心亚单位IV, 叶绿体
Photosystem I reaction center subunit IV, chloroplastic
0.012650004
gene-GoarCp007↓ ATP合成酶CF0 B亚单位
ATP synthase CF0 B subunit
0.159437765

表6

不同倍性草棉两两比较的差异表达基因"

功能分类
Functional characterization
CK vs T DEGs T vs M DEGs CK vs M DEGs
Up DEGs Up DEGs Up DEGs
应激反应 Response to stimulus 178 (62.46%) 285 116 (42.34%) 274 153 (54.84%) 279
逆境反应 Response to stress 89 (57.42%) 155 69 (46.62%) 148 77 (53.85%) 143
细胞 Cell 2586 (70.16%) 3686 1621 (45.22%) 3585 2668 (66.22%) 4029
代谢 Metabolism 360 (72.73%) 495 164 (38.32%) 428 338 (66.14%) 511
活性物质和抗性 Active substances and resistance 181 (60.33%) 300 124 (47.69%) 260 154 (63.37%) 243
光合 Photosynthesis 18 (58.06%) 31 21 (43.75%) 48 24 (63.16%) 38

图3

不同倍性草棉与光合相关的DEGs表达谱热图 缩写同图1。"

表7

不同分组共同差异表达基因的功能特征"

基因ID
Gene ID
Nr注释
Nr annotation
GO条目
GO term
gene-LOC108450929↑ 果胶甲基酯酶
Pectin methylesterase (gi|377824753)
果胶分解代谢过程, 催化活性的负调节, 细胞壁降解
Pectin catabolic process (GO:0045490), negative regulation of catalytic activity (GO:0043086), cell wall modification (GO:0042545)
gene-LOC108489968↑ 蛋白酪氨酸磷酸酶基因Pten (gi|728820218) 肽基酪氨酸去磷酸化
Peptidyl-tyrosine dephosphorylation (GO:0035335)
gene-LOC108468194↑ 65-kD微管相关4-样蛋白
65-kD microtubule-associated 4-like protein (gi|728815965)
微管细胞骨架组织, 胞质分裂
Microtubule cytoskeleton organization (GO:0000226),
cytokinesis (GO:0000910)
gene-LOC108473756↑ 信号肽肽酶-样2B
Signal peptide peptidase-like 2B (gi|728825570)
蛋白质水解
Proteolysis (GO:0006508)
gene-LOC108450751↑ 帕他汀A-3组
Patatin group A-3 (gi|728835268)
脂质分解代谢过程
Lipid catabolic process (GO:0016042)
gene-LOC108489958↑ 肽转运蛋白PTR1-样蛋白
Peptide transporter PTR1-like protein (gi|728848860)
寡肽运输
Oligopeptide transport (GO:0006857)
gene-LOC108464066↑ 类枯草杆菌蛋白酶
Subtilisin-like protease (gi|728836560)
蛋白质水解
Proteolysis (GO:0006508)
gene-LOC108454777↑ BAG家族分子伴侣调节因子3
BAG family molecular chaperone regulator 3 (gi|728828609)
基因ID
Gene ID
Nr注释
Nr annotation
GO条目
GO term
gene-LOC108474367↑ 膜蛋白B Envelope glycoprotein B (gi|728812650)
gene-LOC108474374↑ 多聚半乳糖醛酸酶, 非催化亚单位蛋白
Polygalacturonase non-catalytic subunit protein (gi|728845004)
gene-LOC108467652↑ 3-酮酰基辅酶A合酶48
3-ketoacyl-CoA synthase 48 (gi|939191559)
脂肪酸生物合成过程
Fatty acid biosynthetic process (GO:0006633)
gene-LOC108463792↑ 蛋白IQ-31结构域-样蛋白
Protein IQ-DOMAIN 31-like protein (gi|728817716)
gene-LOC108482485↑ RNA聚合酶相关rapA
RNA polymerase-associated rapA (gi|728833883)
gene-LOC108488520↑ 扩张蛋白-A5-样蛋白
Expansin-A5-like protein (gi|728838775)
维细胞生长, 植物型细胞壁组织, 初生根发育
Unidimensional cell growth (GO:0009826), plant-type cell wall organization (GO:0009664), primary root development (GO:0080022)
gene-LOC108470064 束状阿拉伯半乳糖蛋白7
Fasciclin-like arabinogalactan protein 7 (gi|728814486)
gene-LOC108457041↑ 抗氧化1 Oxidation resistance 1 (gi|728849019)
gene-LOC108454471↑ 非特异性脂质转移3
Non-specific lipid-transfer 3 (gi|728831038)
脂质转运
Lipid transport (GO:0006869)
gene-LOC108453673↑ 微管相关TORTIFOLIA1-样蛋白
Microtubule-associated TORTIFOLIA1-like
protein (gi|728816012)
gene-LOC108450464↑ 溶酶体β-葡萄糖苷酶
Lysosomal beta glucosidase (gi|728850760)
葡聚糖分解代谢过程
Glucan catabolic process (GO:0009251)
gene-LOC108471291↑ 蛋白透明种皮12-样蛋白
Protein transparent testa 12-like protein (gi|728842256)
药物跨膜转运
Drug transmembrane transport (GO:0006855)
gene-LOC108450235↑ 微管相关TORTIFOLIA1-样蛋白
Microtubule-associated TORTIFOLIA1-like
protein (gi|728831405)
gene-LOC108452970↑ 孢子衣SA Spore coat SA (gi|728832383)
gene-LOC108488617↑ 脂质转移蛋白前体
Lipid transfer protein precursor (gi|403391463)
脂质转运
Lipid transport (GO:0006869)
gene-LOC108483479↑ 微管相关TORTIFOLIA1-样蛋白
Microtubule-associated TORTIFOLIA1-like protein (gi|728812036)
gene-LOC108461575↑ 葡甘聚糖4-β-甘露糖基转移酶9-样蛋白
Glucomannan 4-beta-mannosyltransferase 9-like protein (gi|728840378)
基因ID
Gene ID
Nr注释
Nr annotation
GO条目
GO term
gene-LOC108451848↑ 纤维素合酶A催化亚基6[UDP形成]-样蛋白
Cellulose synthase A catalytic subunit 6 [UDP-forming]-like protein (gi|728849775)
纤维素生物合成过程, 细胞壁组织
Cellulose biosynthetic process (GO:0030244), cell wall
organization (GO:0071555)
gene-LOC108452375↑ 双功能单脱氢抗坏血酸还原酶和碳酸酐酶-3
Bifunctional monodehydroascorbate reductase and carbonic anhydrase nectarin-3 (gi|728829994)
gene-LOC108465289↑ 葡甘聚糖4-β-甘露糖基转移酶2-样蛋白
Glucomannan 4-beta-mannosyltransferase 2-like protein (gi|728841581)
甘露糖基化, 黏质生物合成过程, 与种皮发育有关的黏质代谢过程
Mannosylation (GO:0097502), mucilage biosynthetic process (GO:0010192), mucilage metabolic process involved in seed coat development (GO:0048359)
gene-LOC108457166↑ 葡甘聚糖4-β-甘露糖基转移酶2-样蛋白
Glucomannan 4-beta-mannosyltransferase 2-like protein (gi|728809263)
甘露糖基化, 黏质生物合成过程, 与种皮发育有关的黏质代谢过程
Mannosylation (GO:0097502), mucilage biosynthetic process (GO:0010192), mucilage metabolic process involved in seed coat development (GO:0048359)
gene-LOC108471046↑ 磷酸核糖氨基咪唑琥珀酰胺合酶
Phosphoribosylaminoimidazole-succinocarboxamide synthase (gi|728831447)
gene-LOC108489598↓ (+)-新薄荷醇脱氢酶-样蛋白
(+)-neomenthol dehydrogenase-like protein (gi|7288377490)
氧化还原过程
Oxidation-reduction process (GO:0055114)
gene-LOC108472997↓ 光调节Light-regulated (gi|728817354)
gene-LOC108459335↓ 光调节Light-regulated (gi|728842555)
gene-LOC108476977↓ β-淀粉酶3, 叶绿体-样蛋白
Beta-amylase 3, chloroplastic-like protein (gi|728849255)
多糖分解代谢过程
Polysaccharide catabolic process (GO:0000272)
gene-LOC108475943↓ 丝氨酸/苏氨酸蛋白激酶CTR1
Serine/threonine-protein kinase CTR1 (gi|728830021)
蛋白质磷酸化
Protein phosphorylation (GO:0006468)
gene-LOC108476209↓ γ-谷氨酰连接酶Gamma-glutamyl ligase (gi|728810338)
gene-LOC108472513↓ 戊二醛基二磷酸合酶, 叶绿体
Ent-copalyl diphosphate synthase, chloroplastic (gi|728815153)
代谢过程Metabolic process (GO:0008152)
[1] Hutchinson J B, Silow R A, Stephens S G. The evolution of Gossypium and the differentiation of the cultivated cottons. Quart Rev Biol, 1949, 24: 143-144.
doi: 10.1086/396965
[2] Satya N J, Anukool S, Krishan M R, Alok R, Sunil K S, Tarannum N, Meenal S, Sumit K. B, Shrikant M, Mehar H A, Hemant K Y, Rakesh T, Samir V S. Development and characterization of genomic and expressed SSRs for levant cotton (Gossypium herbaceum L.). Theor Appl Genet, 2012, 124: 565-576.
doi: 10.1007/s00122-011-1729-y
[3] Sattler M C, Carvalho C R, Clarindo W R. The polyploidy and its key role in plant breeding. Planta, 2016, 243: 281-296.
doi: 10.1007/s00425-015-2450-x
[4] Bhattarai K, Areem A K, Deng Z. In vivo induction and characterization of polyploids in gerbera daisy. Sci Hortic, 2021, 282: 110054.
doi: 10.1016/j.scienta.2021.110054
[5] 尚小红, 单忠英, 严华兵, 肖亮, 曹升, 周慧文. 木薯‘新选048’二倍体及其同源四倍体对干旱胁迫的生理响应. 植物生理学报, 2018, 54: 1064-1072.
Shang X H, Shan Z Y, Yan H B, Xiao L, Cao S, Zhou H W. Physiological responses of cassava variety ‘Xinxuan 048’ diploid and autotetraploid to drought stress. Plant Physiol J, 2018, 54: 1064-1072. (in Chinese with English abstract)
[6] 李昱樱, 申状状, 荣二花, 郑赟, 吴玉香. 草棉同源四倍体的诱导与鉴定. 山西农业大学学报(自然科学版), 2019, 39(6): 40-44.
Li Y Y, Shen Z Z, Rong E H, Zheng Y, Wu Y X. Autotetraploid induction and identification of G. herbaceum. J Shanxi Agric Univ (Nat Sci Edn), 2019, 39(6): 40-44. (in Chinese with English abstract)
[7] 姚娜, 刘秀明, 董园园, 王南, 孟璐璐, 李海燕. 转录组的测序方法及应用研究概述. 北方园艺, 2017, (12): 192-198.
Yao N, Liu X M, Dong Y Y, Wang N, Meng L L, Li H Y. Advances in application and sequencing methods of transcriptome. Northern Hortic, 2017, (12): 192-198. (in Chinese with English abstract)
[8] Li H Y, Chen S M, Song A P, Wang H B, Fang W M, Guan Z Y, Jiang J F, Chen F D. RNA-Seq derived identification of differential transcription in the chrysanthemum leaf following inoculation with Alternaria tenuissima. BMC Genomics, 2014, 15: 9.
doi: 10.1186/1471-2164-15-9
[9] 戚家明, 张东旭, 王少丽, 黄立斌, 夏丽丽, 董汪洋, 郑强, 刘青娥, 肖建中, 徐志文. 基于转录组测序数据对Weissella confusa XU1中低聚木糖代谢系统的分析. 微生物学报, 2020, 60: 912-923.
Qi J M, Zhang D X, Wang S L, Huang L B, Xia L L, Dong W Y, Zheng Q, Liu Q E, Xiao J Z, Xu Z W. Transcriptome analysis of xylo-oligosaccharides utilization systems in Weissella confusa XU1. Acta Microbiol Sin, 2020, 60: 912-923. (in Chinese with English abstract)
[10] 侯孟典, 王会, 钟金城, 柴志欣, 益西康珠, 王吉坤, 王嘉博. 基于转录组测序筛选黄牛低氧适应性相关差异基因. 华北农学报, 2020, 35(2): 217-227.
Hou M D, Wang H, Zhong J C, Chai Z X, Yixikangzhu, Wang J K, Wang J B. Screening differential genes related to hypoxia adaptation in cattle by using transcriptome analysis. Acta Agric Boreali-Sin, 2020, 35(2): 217-227. (in Chinese with English abstract)
[11] 黄伊子, 郭芾, 韩凝, 边红武. 基于RNA-seq的水稻根尖和侧根区伤组织诱导中生长素相关基因差异表达分析. 植物生理学报, 2020, 56: 1745-1755.
Huang Y Z, Guo F, Han N, Bian H W. RNA-seq-based differential expression analysis of auxin-related genes during callus induction derived from root tip and lateral root region in rice (Oryza sativa). Plant Physiol J, 2020, 56: 1745-1755. (in Chinese with English abstract)
[12] 申状状. 棉属远缘杂种的合成及性状鉴定与转录组分析. 山西农业大学硕士学位论文, 山西晋中, 2018.
Shen Z Z. Synthesis, Identification and Transcriptome Analysis of Distant Hybrids in Gossypium. MS Thesis of Shanxi Agricultural University, Jinzhong, Shanxi, China, 2018. (in Chinese with English abstract)
[13] 刘新星, 陈超. 基于短序列测序数据的四倍体拟南芥转录组研究. 中国生物工程杂志, 2011, 31(7): 45-53.
Liu X X, Chen C. De novo assembly of allotetraploid Arabidopsis suecica transcriptome using short reads for gene discovery and marker identification. China Biotechnol, 2011, 31(7): 45-53. (in Chinese with English abstract)
[14] 李萌, 郭烨, 刘松珊, 庞晓明, 李颖岳. 二倍体及其同源四倍体酸枣的生理特征和转录组分析. 北京林业大学学报, 2019, 41(7): 57-67.
Li M, Guo Y, Liu S S, Pang X M, Li Y Y. Physiological characteristics and transcriptomics analysis in diploid Ziziphus jujuba Mill. var. spinosa and its autotetraploid. J Beijing For Univ, 2019, 41(7): 57-67. (in Chinese with English abstract)
[15] 高真, 张成才, 罗丽娜, 张子璇, 王将, 向增旭. 茅苍术二倍体及其同源四倍体的生理特征与转录组差异分析. 南京农业大学学报, 2020, 43: 1024-1032.
Gao Z, Zhang C C, Luo L N, Zhang Z X, Wang J, Xiang Z X. Physiological characteristics and transcriptome differences analysis of diploid and autotetraploid of Atractylodes lancea. J Nanjing Agric Univ, 2020, 43: 1024-1032. (in Chinese with English abstract)
[16] 王娜, 赵资博, 高琼, 何守朴, 马晨辉, 彭振, 杜雄明. 陆地棉盐胁迫应答基因GhPEAMT1的克隆及功能分析. 中国农业科学, 2021, 54: 248-260.
Wang N, Zhao Z B, Gao Q, He S P, Ma C H, Peng Z, Du X M. Cloning and functional analysis of salt stress response gene GhPEAMT1 in upland cotton. Sci Agric Sin, 2021, 54: 248-260. (in Chinese with English abstract)
[17] 王晓阳, 王丽媛, 潘兆娥, 何守朴, 王骁, 龚文芳, 杜雄明. 亚洲棉短绒突变体纤维发育及其差异基因表达分析. 作物学报, 2020, 46: 645-660.
doi: 10.3724/SP.J.1006.2020.94133
Wang X Y, Wang L Y, Pan Z E, He S P, Wang X, Gong W F, Du X M. Analysis of differentially expressed genes and fiber development in Gossypium arboreum fuzzless mutant. Acta Agron Sin, 2020, 46: 645-660 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.94133
[18] 钱玉源, 刘祎, 张曦, 王燕, 王广恩, 崔淑芳, 李俊兰. 棉花种子质量突变体ims-15及其近等基因系种子发育期转录组分析. 华北农学报, 2021, 36(3): 50-59.
Qian Y Y, Liu Y, Zhang X, Wang Y, Wang G E, Cui S F, Li J L. Transcriptome analysis of cotton seed weight mutant ims-15 and its near isogenic line during seed development. Acta Agric Boreali-Sin, 2021, 36(3): 50-59. (in Chinese with English abstract)
[19] 王三根. 植物生理学实验教程. 北京: 科学出版社, 2017. pp 188-206.
Wang S G. Plant Physiology Experiment. Beijing: Science Press, 2017. pp 188-206. (in Chinese)
[20] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. pp 140-148.
Gao J F. Experimental Guidance of Plant Physiology. Beijing: Higher Education Press, 2006. pp 140-148. (in Chinese)
[21] 何光源. 植物基因工程. 北京: 清华大学出版社, 2007. pp 74-82.
He G Y. Plant Physiology. Beijing: Tsinghua University Press, 2007. pp 74-82. (in Chinese)
[22] 周庭辉, 戴小枫. 棉花抗黄萎病生理与生化机制研究. 分子植物育种, 2006, 4: 593-600.
Zhou T H, Dai X F. Research on physiological and biochemical mechanism of cotton against verticillium wilt. Mol Plant Breed, 2006, 4: 593-600. (in Chinese with English abstract)
[23] Gange J M, Smalle J, Gingerich D J, Walker J M, Yoo S D, Yanagisawa S C, Vierstra R D, Newcomb E H. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation Proc Natl Acad Sci USA, 2004, 101: 6803-6808.
[24] 王涛, 陈孟龙, 刘玲, 宁传丽, 蔡斌华, 章镇, 乔玉山. 植物多倍体化中基因组和基因表达的变化. 植物学报, 2015, 50: 504-515.
doi: 10.11983/CBB14097
Wang T, Chen M L, Liu L, Ning C L, Cai B H, Zhang Z, Qiao Y S. Changes in genome and gene expression during plant polyploidization. Chin Bull Bot, 2015, 50: 504-515. (in Chinese with English abstract)
[25] Xu C, Bai Y, Lin X, Zhao N, Hu L, Gong Z, Wendel J F, Liu B. Genome-wide disruption of gene expression in allopolyploids but not hybrids of rice subspecies. Mol Biol Evol, 2014, 31: 1066-1076.
doi: 10.1093/molbev/msu085
[26] 柴小翠, 杨文涛, 汤琪, 马雪凤, 熊杰, 王平, 缪炜. 竹节参处理下嗜热四膜虫基因表达变化分析. 中国中药杂志, 2019, 44: 2580-2587.
Chai X C, Yang W T, Tang Q, Ma X F, Xiong J, Wang P, Miao W. Analysis of gene expression of Tetrahymena thermophila treated with Panax japonicas. China J Chin Materia Med, 2019, 44: 2580-2587. (in Chinese with English abstract)
[27] 蔡力. 二倍体和四倍体紫锥菊中叶形态结构及其光合效率的比较研究. 华南农业大学硕士学位论文, 广东广州, 2016.
Cai L. Comparative Study of Morphological Structure and Photosynthetic Efficiency Between Diploid and Tetraploid Echinacea Purpurea. MS Thesis of South China Agriculture University, Guangzhou, Guangdong, China, 2016. (in Chinese with English abstract)
[28] 周影影. 菘蓝同源多倍体及白菜菘蓝异源多倍体后代的细胞学及转录组学研究. 华中农业大学博士学位论文, 湖北武汉, 2014.
Zhou Y Y. Cytology and Transcriptome Analysis of Isatis indigotica Autopolyploid and the Progeny of Brassica rapa-Isatis indigotica Allohexaploid. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2014. (in Chinese with English abstract)
[29] Tsukaya H. Does ploidy level directly control cell size? Counterevidence from Arabidopsis genetics. PLoS One, 2013, 8: e83729.
doi: 10.1371/journal.pone.0083729
[30] Cosgrove D J. Loosening of plant cell walls by expansions. Nature, 2000, 407: 321-326.
doi: 10.1038/35030000
[31] Han Z F, Qin Y X, Deng Y S, Kong F J, Wang Z W, Shen G F, Wang J H, Duan B, Li R Z. Expression profiles of a cytoplasmic male sterile line of Gossypium harknessii and its fertility restorer and maintainer lines revealed by RNA-Seq. Plant Physiol Biochem, 2017, 116: 106-115.
doi: 10.1016/j.plaphy.2017.04.018
[32] Siedlecka A, Wiklund S, Peronne M A, Micheli F, Lesniewska J, Sethson I, Edlund U, Richardl, Sundberg B, Mellerowicz E J. Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus. Plant Physiol, 2008, 146: 554-565.
doi: 10.1104/pp.107.111963 pmid: 18065553
[33] Hongo S, Sato K, Yokoyama R, Nishitani K. Demethylesterification of the primary wall by PECTIN METHYLESTERASE35 provides mechanical support to the Arabidopsis stem. Plant Cell, 2012, 24: 2624-2634.
doi: 10.1105/tpc.112.099325
[34] Chen J, Dong X, Li Q, Zhou X, Chen W. Biosynthesis of the active compounds of Isatis indigotica based on transcriptome sequencing and metabolites profiling. BioMed Central, 2013, 14: 857-869.
[35] Gao A G, Hakimi S M, Mittanck C A, Wu Y, Woerner B M, Stark D M, Shah D M, Liang J, Rommens C M. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol, 2000, 18: 1307-1340.
pmid: 11101813
[36] Romeis T, Ludwig A A, Martin R, Jones J D G. Calcium- dependent protein kinases play an essential role in a plant defense response. EMBO J, 2001, 20: 5556-5567.
pmid: 11597999
[37] Rudd J J, Franklin-Tong V E. Unraveling response-specificity in Ca2+ signaling pathways in plant cells. New Phytol, 2001, 151: 7-33.
doi: 10.1046/j.1469-8137.2001.00173.x
[38] 姬万丽, 朱红菊, 路绪强, 赵胜杰, 何楠, 耿丽华, 刘文革. 四倍体西瓜抗枯萎病菌生理小种1的机理. 中国农业科学, 2018, 51: 3750-3765.
Ji W L, Zhu H J, Lu X Q, Zhao S J, He N, Geng L H, Liu W G. The Mechanism of resistance to Fusarium oxysporum f. sp. niveum race 1 in tetraploid watermelon. Sci Agric Sin, 2018, 51: 3750-3765. (in Chinese with English abstract)
[39] 万华方, 魏帅, 冯宇霞, 钱伟. 以六倍体(AnAnCnCnCoCo)为桥梁创制抗旱新型甘蓝型油菜(AnArCnCo). 中国农业科学, 2020, 53: 3226-3234.
Wan H F, Wei S, Feng Y X, Qian W. Creating a new-type Brassica napus (AnArCnCo) with high drought-resistance employing hexaploid (AnAnCnCnCoCo) as a bridge. Sci Agric Sin, 2020, 53: 3226-3234. (in Chinese with English abstract)
[40] 葛霞, 徐瑞, 李梅, 田甲春, 李守强, 程建新, 田世龙. 香芹酮对马铃薯种薯发芽的调控机制. 中国农业科学, 2020, 53: 4929-4939.
Ge X, Xu R, Li M, Tian J C, Li S Q, Cheng J X, Tian S L. Regulation mechanism of carvone on seed potato sprouting. Sci Agric Sin, 2020, 53: 4929-4939. (in Chinese with English abstract)
[41] 李玉青, 王清连, 韦春艳, 董涛, 陈全家, 周瑞阳. 棉花胞质雄性不育细胞形态学观察及生理生化特性的研究. 西南农业学报, 2020, 33(1): 58-63.
Li Y Q, Wang Q L, Wei C Y, Dong T, Chen Q J, Zhou R Y. Morphological observation and physiological and biochemical characteristics of cotton cytoplasmic male sterile cells. Southwest China J Agric Sci, 2020, 33(1): 58-63. (in Chinese with English abstract)
[42] 王忠. 植物生理学. 北京: 中国农业出版社, 2010. p 137.
Wang Z. Plant Physiology. Beijing: China Agriculture Press, 2010. p 137. (in Chinese)
[43] 于济, 沙伟, 张梅娟, 马天意. 植物磷酸烯醇式丙酮酸羧化酶的研究进展. 高师理科学刊, 2021, 41(2): 54-60.
Yu J, Sha W, Zhang M J, Ma T Y. Research progress of plant phosphoenolpyruvate carboxylase. J Sci Teach Coll Univ, 2021, 41(2): 54-60. (in Chinese with English abstract)
[1] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[2] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
[3] 李晓旭, 王蕊, 张利霞, 宋亚萌, 田晓楠, 葛荣朝. 水稻基因OsATS的克隆及功能鉴定[J]. 作物学报, 2021, 47(10): 2045-2052.
[4] 李晶岚,陈鑫欣,石翠翠,刘方惠,孙静,葛荣朝. OsRPK1基因过表达和RNA干涉对水稻苗期耐盐性的影响[J]. 作物学报, 2020, 46(8): 1217-1224.
[5] 魏大勇, 崔艺馨, 熊清, 汤青林, 梅家琴, 李加纳, 钱伟. 用全基因组关联作图和共表达网络分析鉴定油菜种子硫苷含量的候选基因[J]. 作物学报, 2018, 44(05): 629-641.
[6] 蒲敏, 罗绍兰, 廉小平, 张贺翠, 白晓璟, 王玉奎, 左同鸿, 高启国, 任雪松, 朱利泉. 自花授粉诱导的甘蓝功能基因BoSPI的克隆与表达分析[J]. 作物学报, 2018, 44(02): 177-184.
[7] 黄启秀,曲延英,姚正培,李梦雨,陈全家*. 海岛棉枯萎病抗性与类黄酮代谢相关基因表达量的相关[J]. 作物学报, 2017, 43(12): 1791-1801.
[8] 李智,李国龙,张永丰,于超,苏文斌,樊福义,张少英. 膜下滴灌条件下高产甜菜灌溉的生理指标[J]. 作物学报, 2017, 43(11): 1724-1730.
[9] 魏颖娟,赵杨,邹应斌*. 不同穗型超级稻品种籽粒灌浆特性[J]. 作物学报, 2016, 42(10): 1516-1529.
[10] 贺晓岚,王建伟,李文旭,陈真真,赵继新,武军,王中华,陈新宏. 大赖草6-SFT基因的克隆及其转基因烟草抗旱和抗寒性分析[J]. 作物学报, 2016, 42(03): 389-398.
[11] 王小丽,杜建中,郝曜山,张丽君,赵欣梅,王亦学,孙毅. BADH基因玉米植株的获得及其耐盐性分析[J]. 作物学报, 2014, 40(11): 1973-1979.
[12] 余渝;王志伟;冯常辉;张艳欣;林忠旭;张献龙. 草棉EST-SSRs的遗传评价[J]. 作物学报, 2008, 34(12): 2085-2091.
[13] 郭东伟;李菲;马留银;李连城;马有志;孙日飞. 白菜的内多倍化现象[J]. 作物学报, 2008, 34(08): 1386-1392.
[14] 王关林;邢卓;潘凌子;方宏筠. 蜂毒肽对农作物生理指标及防御系统酶影响的研究[J]. 作物学报, 2006, 32(04): 593-596.
[15] 张娟; 张正斌;谢惠民;董宝娣; 胡梦芸;徐萍. 小麦叶片水分利用效率及相关生理性状的关系研究[J]. 作物学报, 2005, 31(12): 1593-1599.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[4] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[5] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[6] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[7] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[8] 杨文雄;杨芳萍;梁丹;何中虎;尚勋武;夏先春. 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测[J]. 作物学报, 2008, 34(07): 1109 -1113 .
[9] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[10] 王国莉;郭振飞. 磷营养对水稻不同耐冷品种光合特性的影响[J]. 作物学报, 2007, 33(08): 1385 -1389 .