作物学报 ›› 2022, Vol. 48 ›› Issue (11): 2749-2764.doi: 10.3724/SP.J.1006.2022.14225
吴家怡(), 袁芳, 孟丽姣, 李晨阳, 史红松, 白岩松, 武晓如, 李加纳, 周清元*(), 崔翠*()
WU Jia-Yi(), YUAN Fang, MENG Li-Jiao, LI Chen-Yang, SHI Hong-Song, BAI Yan-Song, WU Xiao-Ru, LI Jia-Na, ZHOU Qing-Yuan*(), CUI Cui*()
摘要:
随着土壤酸化的加剧, 土壤中的Al3+已成为限制光合作用、影响作物生长和产量的主要因素之一。本文以2400 µmol L-1铝溶液处理由甘蓝型油菜品种中双11号及10D130构建的高世代重组自交系(RIL)群体为研究对象, 测定油菜铝毒胁迫下油菜苗期光合能力和叶绿素荧光相关性状, 计算其相对值(处理/对照)并定位其QTL, 根据QTL置信区间筛选合适的候选基因。研究结果表明, 光合能力性状间和叶绿素荧光参数间分别都存在着显著相关, 但是光合能力参数和叶绿素荧光参数之间相关性不显著; 除相对Tr外, 其余10个性状(相对Pn、相对Gs、相对Ci、相对ΦPSII、相对Fv/Fo、相对Fv'/Fm°、相对qP、相对ETR、相对NPQ和相对干重)共检测到16个与铝胁迫和光合相关性状QTL位点, 分别位于A03、A05、A06、A08、A09、A10、C02和C09染色体上, LOD值介于2.05~3.18, 能够解释的表型变异为8.1%~12.3%, 其中在A03染色体106.038~109.129 cM位置上, 相对Gs与相对Fv°/Fm°的位点完全重合, A06染色体上145.355~167.417 cM处检测到相对ΦPSII和相对ETR的QTL置信区间完全重合。筛选到47个可能与抗铝胁迫及光合相关的候选基因, 涉及到有机酸分泌、金属离子转运、激素调节、启动抗氧化保护以及叶绿体自身调节、磷元素摄入调节等方面。本研究为油菜铝抗性及相关光合基因功能挖掘和油菜耐铝高光合品种选育奠定基础。
[1] | Brunner I, Sperisen C. Aluminum exclusion and Aluminum tolerance in woody plants. Front Plant Sci, 2013, 4: 1-12. |
[2] |
Kopittke P M, Moore K L, Lombi E, Gianoncelli A, Ferguson B J, Blamey F P C, Menzies N W, Nicholson T M, McKenna B A, Wang P, Gresshoff P M, Kourousias G, Webb R I, Green K, Tollenaere A. Identification of the primary lesion of toxic aluminum in plant roots. Plant Physiol, 2015, 167: 1402-1411.
doi: 10.1104/pp.114.253229 pmid: 25670815 |
[3] | Jones D L, Ryan P R. Aluminum Toxicity: Encyclopedia of Applied Plant Sciences, 2nd edn. Wellesbourne: Elsevier Ltd, 2017. pp 211-218. |
[4] |
Pontigo S, Godoy K, Jimenez H, Gutierrez-Moraga A, Mora M D, Cartes P. Silicon-mediated alleviation of aluminum toxicity by modulation of Al/Si uptake and antioxidant performance in ryegrass plants. Front Plant Sci, 2017, 8: 642.
doi: 10.3389/fpls.2017.00642 pmid: 28487719 |
[5] |
Teng W C, Kang Y C, Hou W J, Hu H Z, Luo W J, Wei J, Wang L H, Zhang B Y. Phosphorus application reduces aluminum toxicity in two Eucalyptus clones by increasing its accumulation in roots and decreasing its content in leaves. PLoS One, 2018, 13: e0190900.
doi: 10.1371/journal.pone.0190900 |
[6] |
Dai C Y, Qiu L S, Guo L P, Jing S S, Chen X Y, Cui X M, Yang Y. Salicylic acid alleviates aluminum-induced inhibition of biomass by enhancing photosynthesis and carbohydrate metabolism in Panax notoginseng. Plant Soil, 2019, 445: 183-198.
doi: 10.1007/s11104-019-04293-6 |
[7] |
Zhao X Q, Chen Q H, Wang Y M, Shen Z G, Shen W B, Xu X M. Hydrogen-rich water induces aluminum tolerance in maize seedlings by enhancing antioxidant capacities and nutrient homeostasis. Ecotox Environ Safe, 2017, 144: 369-379.
doi: 10.1016/j.ecoenv.2017.06.045 |
[8] |
Hasni I, Yaakoubi H, Hamdani S, Tajmir-Riahi H A, Carpentier R. Mechanism of interaction of Al3+ with the proteins composition of photosystem II. PLoS One, 2015, 10: e0120876.
doi: 10.1371/journal.pone.0120876 |
[9] |
Guo P, Qi Y P, Cai Y T, Yang T Y, Yang L T, Huang Z R, Chen L S. Aluminum effects on photosynthesis, reactive oxygen species and methylglyoxal detoxification in two Citrus species differing in aluminum tolerance. Tree Physiol, 2018, 38: 1548-1565.
doi: 10.1093/treephys/tpy035 |
[10] |
Wojcik-Jagla M, Rapacz M, Tyrka M, Koscielniak J, Crissy K, Zmuda K. Comparative QTL analysis of early short-time drought tolerance in Polish fodder and malting spring barleys. Theor Appl Genet, 2013, 126: 3021-3034.
doi: 10.1007/s00122-013-2190-x |
[11] |
Liu X H, Fan Y, Mak M, Babla M, Holford P, Wang F F. QTLs for stomatal and photosynthetic traits related to salinity tolerance in barley. BMC Genomics, 2017, 18: 9.
doi: 10.1186/s12864-016-3380-0 |
[12] |
Foroozanfar M, Exbrayat S, Gentzbittel L, Bertoni G, Maury P, Naghavie M R, Peyghambari A, Badri M, Ben C, Debelle F, Sarrafi A. Genetic variability and identification of quantitative trait loci affecting plant growth and chlorophyll fluorescence parameters in the model legume Medicago truncatula under control and salt stress conditions. Funct Plant Biol, 2014, 41: 983-1001.
doi: 10.1071/FP13370 pmid: 32481051 |
[13] |
Yang D L, Jing R L, Chang X P, Li W. Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat. J Integr Plant Biol, 2007, 49: 646-654.
doi: 10.1111/j.1744-7909.2007.00443.x |
[14] |
Gu J F, Yin X Y, Struik P C, Stomph T J, Wang H Q. Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativa L.) leaves under drought and well-watered field conditions. J Exp Bot, 2012, 63: 455-469.
doi: 10.1093/jxb/err292 |
[15] |
Fracheboud Y, Jompuk C, Ribaut, J M, Stamp P, Leipner J. Genetic analysis of cold-tolerance of photosynthesis in maize. Plant Mol Biol, 2004, 56: 241-253.
pmid: 15604741 |
[16] |
王瑞莉, 王刘艳, 叶桑, 郜欢欢, 雷维, 吴家怡, 袁芳, 孟丽姣, 唐章林, 李加纳, 周清元, 崔翠. 铝毒胁迫下甘蓝型油菜种子萌发期相关性状的QTL 定位. 作物学报, 2020, 46: 832-843.
doi: 10.3724/SP.J.1006.2020.94154 |
Wang R L, Wang L Y, Ye S, Gao H H, Lei W, Wu J Y, Yuan F, Meng L J, Tang Z L, Li J N, Zhou Q Y, Cui C. QTL mapping of seed germination-related traits in Brassica napus L. under aluminum toxicity stress. Acta Agron Sin, 2020, 46: 832-843 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94154 |
|
[17] | 王刘艳, 王瑞莉, 叶桑, 郜欢欢, 雷维, 陈柳依, 吴家怡, 孟丽姣, 袁芳, 唐章林, 李加纳, 周清元, 崔翠. 苯磺隆胁迫下甘蓝型油菜萌发期关联性状的QTL定位及候选基因筛选. 中国农业科学, 2020, 53: 1510-1523. |
Wang L Y, Wang R L, Ye S, Gao H H, Lei W, Chen L Y, Wu J Y, Meng L J, Yuan F, Tang Z L, Li J N, Zhou Q Y, Cui C. QTL mapping and candidate genes screening of related traits in Brassica napus L. during the germination under tribenuron-methyl stress. Sci Agric Sin, 2020, 53: 1510-1523 (in Chinese with English abstract) | |
[18] |
Xu G D, Wu Y H, Liu D, Wang Y P, Zhang Y, Liu P. Effects of organic acids on uptake of nutritional elements and Al forms in Brassica napus L. under Al stress as analyzed by 27Al-NMR. Braz J Bot, 2016, 39: 1-8.
doi: 10.1007/s40415-015-0198-y |
[19] |
Wang H, Jin M K, Xu L L, Xi H, Wang B H, Du S T, Liu H J, Wen Y Z. Effects of ketoprofen on rice seedlings: insights from photosynthesis, antioxidative stress, gene expression patterns, and integrated biomarker response analysis. Environ Pollut, 2020, 263: 114533.
doi: 10.1016/j.envpol.2020.114533 |
[20] | 王传堂, 唐月异, 焦坤, 王菲菲, 苏江顺, 于树涛, 高华援, 付春, 白冬梅, 张青云. 春花生耐播种出苗期低温评价. 山东农业科学, 2021, 53(2): 20-23. |
Wang C T, Tang Y Y, Jiao K, Wang F F, Su J S, Yu S T, Gao H Y, Fu C, Bai D M, Zhang Q Y. Evaluation on low temperature tolerance of spring peanut genotypes during sowing to emergence periods. Shandong Agric Sci, 2021, 53(2): 20-23 (in Chinese with English abstract) | |
[21] | 刘列钊, 李加纳. 利用甘蓝型油菜高密度SNP遗传图谱定位油酸、亚麻酸及芥酸含量QTL位点. 中国农业科学, 2014, 47: 24-32. |
Liu L Z, Li J N. QTL Mapping of oleic acid, linolenic acid and erucic acid content in Brassica napus by using the high density SNP genetic map. Sci Agric Sin, 2014, 47: 24-32 (in Chinese with English abstract) | |
[22] | 叶桑, 崔翠, 郜欢欢, 雷维, 王刘艳, 王瑞莉, 陈柳依, 曲存民, 唐章林, 李加纳, 周清元. 基于SNP遗传图谱对甘蓝型油菜部分脂肪酸组成性状的QTL定位. 中国农业科学, 2019, 52: 3733-3747. |
Ye S, Cui C, Gao H H, Lei W, Wang L Y, Wang R L, Chen L Y, Qu C M, Tang Z L, Li J N, Zhou Q Y. QTL identification for fatty acid content in Brassica napus using the high density SNP genetic map. Sci Agric Sin, 2019, 52: 3733-3747. (in Chinese with English abstract) | |
[23] |
McCouch S R, Chen X L, Panaud O, Temnykh S, Xu Y B, Cho Y G, Huang N, Ishii T, Blair M. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol, 1997, 35: 89-99.
pmid: 9291963 |
[24] |
Tsai Y C, Chen K C, Cheng T S, Lee C, Lin S H, Tung C W. Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. BMC Plant Biol, 2019, 19: 403.
doi: 10.1186/s12870-019-1983-8 |
[25] |
Bruex A, Kainkaryam R M, Wieckowski Y, Kang Y H, Bernhardt C, Xia Y, Zheng X H, Wang J Y, Lee M M, Benfey P, Woolf P J, Schiefelbein J. A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genet, 2012, 8: e1002446.
doi: 10.1371/journal.pgen.1002446 |
[26] |
Hanada K, Sawada Y, Kuromori T, Klausnitzer R, Saito K, Toyoda T, Shinozaki K, Li W H, Hirai M Y. Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana. Mol Biol Evol, 2011, 28: 377-382.
doi: 10.1093/molbev/msq204 |
[27] |
Yao L Y, Cheng X, Gu Z Y, Huang W, Li S, Wang L B, Wang Y F, Xu P, Ma H, Ge X C. The AWPM-19 family protein OsPM1 mediates abscisic acid influx and drought response in rice. Plant Cell, 2018, 30: 1258-1276.
doi: 10.1105/tpc.17.00770 |
[28] |
Srivastava S, Brychkova G, Yarmolinsky D, Soltabayeva A, Samani T, Sagi M. Aldehyde oxidase 4 plays a critical role in delaying silique senescence by catalyzing aldehyde detoxification. Plant Physiol, 2017, 173: 1977-1997.
doi: 10.1104/pp.16.01939 pmid: 28188272 |
[29] |
Li D K, Zhang L, Li X Y, Kong X G, Wang X Y, Li Y, Liu Z B, Wang J M, Li X F, Yang Y. AtRAE1 is involved in degradation of ABA receptor RCAR1 and negatively regulates ABA signalling in Arabidopsis. Plant Cell Environ, 2009, 41: 231-244.
doi: 10.1111/pce.13086 |
[30] |
Lim C W, Luan S, Lee S C. A prominent role for RCAR3- mediated ABA signaling in response to Pseudomonas syringae pv.tomato DC3000 infection in Arabidopsis. Plant Cell Physiol, 2014, 55: 1691-1703.
doi: 10.1093/pcp/pcu100 |
[31] |
Villadsen D, Rung J H, Draborg H, Nielsen T H. Structure and heterologous expression of a gene encoding fructose-6-phosphate, 2-kinase/fructose-2,6-bisphosphatase from Arabidopsis thaliana. Biochim Biophys Acta Gene Struct Express, 2000, 1492: 406-413.
doi: 10.1016/S0167-4781(00)00134-2 |
[32] |
Ihnatowicz A, Pesaresi P, Varotto C, Richly E, Schneider A, Jahns P, Salamini F, Leister D. Mutants for photosystem I subunit D of Arabidopsis thaliana: effects on photosynthesis, photosystem I stability and expression of nuclear genes for chloroplast functions. Plant J, 2004, 37: 839-852.
pmid: 14996217 |
[33] |
Cheng X X, Liu J Y, Zhang H, Li F D, Zhang S Y, Xu M, Ruan K, Wang Y H, Fu A G. Crystal structure of Psb27 from Arabidopsis thaliana determined at a resolution of 1.85. Photosynth Res, 2018, 136: 139-146.
doi: 10.1007/s11120-017-0450-3 |
[34] |
Pietrzykowska M, Suorsa M, Semchonok D A, Tikkanen M, Boekema E J, Aro E M, Jansson S. The light-harvesting chlorophyll a/b binding proteins lhcb1 and lhcb2 play complementary roles during state transitions in Arabidopsis. Plant Cell, 2014, 26: 3646-3660.
doi: 10.1105/tpc.114.127373 |
[35] |
Wang Y, Zhang W Z, Song L F, Zou J J, Su Z, Wu W H. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol, 2008, 148: 1201-1211.
doi: 10.1104/pp.108.126375 pmid: 18775970 |
[36] |
Makki R M. Molecular networking of regulated transcription factors under salt stress in wild barley (H. spontaneum). Biosci Biotechnol Res Asia, 2020, 17: 543-557.
doi: 10.13005/bbra/2858 |
[37] |
Ballottari M, Mozzo M, Girardon J, Hienerwadel R, Bassi R. Chlorophyll triplet quenching and photoprotection in the higher plant monomeric antenna protein lhcb5. J Phys Chem B, 2013, 117: 11337-11348.
doi: 10.1021/jp402977y |
[38] |
Nagler M, Nukarinen E, Weckwerth W, Nagele T. Integrative molecular profiling indicates a central role of transitory starch breakdown in establishing a stable C/N homeostasis during cold acclimation in two natural accessions of Arabidopsis thaliana. BMC Plant Biol, 2015, 15: 284.
doi: 10.1186/s12870-015-0668-1 |
[39] |
Lazzarotto F, Turchetto-Zolet A C, Margis-Pinheiro M. Revisiting the non-animal peroxidase superfamily. Trends Plant Sci, 2015, 20: 807-813.
doi: S1360-1385(15)00206-X pmid: 26463217 |
[40] | Ando E, Kinoshita T. Fluence rate dependence of red light-induced phosphorylation of plasma membrane H+-ATPase in stomatal guard cells. Plant Signal Behav, 2019, 14: e1561107. |
[41] |
Cornah J E, Germain V, Ward J L, Beale M H, Smith S M. Lipid utilization, gluconeogenesis, and seedling growth in Arabidopsis mutants lacking the glyoxylate cycle enzyme malate synthase. J Biol Chem, 2004, 279: 42916-42923.
doi: 10.1074/jbc.M407380200 |
[42] |
Chen X X, Ding Y L, Yang Y Q, Song C P, Wang B S, Yang S H, Guo Y, Gong Z Z. Protein kinases in plant responses to drought, salt, and cold stress. J Integr Plant Biol, 2021, 63: 53-78.
doi: 10.1111/jipb.13061 |
[43] |
Doll J, Muth M, Riester L, Nebel S, Bresson J, Lee H C, Zentgraf U. Arabidopsis thaliana WRKY25 transcription factor mediates oxidative stress tolerance and regulates senescence in a redox- dependent manner. Front Plant Sci, 2020, 10: 1734.
doi: 10.3389/fpls.2019.01734 |
[44] | Kipreos E T, Pagano M. The F-box protein family. Genome Biol, 2002, 1: 3002.1. |
[45] |
Ytterberg A J, Peltier J B, van Wijk K J. Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol, 2006, 140: 984-997.
pmid: 16461379 |
[46] |
Francisco P, Li J, Smith S M. The gene encoding the catalytically inactive beta-amylase BAM4 involved in starch breakdown in Arabidopsis leaves is expressed preferentially in vascular tissues in source and sink organs. J Plant Physiol, 2010, 167: 890-895.
doi: 10.1016/j.jplph.2010.01.006 |
[47] |
Ascencio-Ibanez J T, Sozzani R, Lee T J, Chu T M, Wolfinger R D, Cella R, Hanley-Bowdoin L. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol, 2008, 148: 436-454.
doi: 10.1104/pp.108.121038 pmid: 18650403 |
[48] |
Lu W, Tang X L, Wu C A. Identification and characterization of fructose 1,6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene, 2012, 503: 65-74.
doi: 10.1016/j.gene.2012.04.042 |
[49] |
Hey D, Rothbart M, Herbst J, Wang P, Muller J, Wittmann D, Gruhl K, Grimm B. LIL3, a light-harvesting complex protein, links terpenoid and tetrapyrrole biosynthesis in Arabidopsis thaliana. Plant Physiol, 2017, 174: 1037-1050.
doi: 10.1104/pp.17.00505 |
[50] |
Zhang M, Chen C, Froehlich J E, TerBush A D, Osteryoung K W. Roles of Arabidopsis PARC6 in coordination of the chloroplast division complex and negative regulation of FtsZ assembly. Plant Physiol, 2016, 170: 250-262.
doi: 10.1104/pp.15.01460 pmid: 26527658 |
[51] | Barragan-Rosillo A C, Peralta-Alvarez C A, Ojeda-Rivera J O, Arzate-Mejia R G, Recillas-Targa F, Herrera-Estrella L. Genome accessibility dynamics in response to phosphate limitation is controlled by the PHR1 family of transcription factors in Arabidopsis. Proc Natl Acad Sci USA, 2021, 118: e2107558118. |
[52] |
Ma B Q, Yuan Y Y, Gao M, Qi T H, Li M J, Ma F W. Genome-wide identification, molecular evolution, and expression divergence of aluminum-activated malate transporters in apples. Int J Mol Sci, 2018, 19: 2807.
doi: 10.3390/ijms19092807 |
[53] |
Nikiforova V, Freitag J, Kempa S, Adamik M, Hesse H, Hoefgen R. Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J, 2003, 33: 633-650.
pmid: 12609038 |
[54] |
Rademacher E H, Lokerse A S, Schlereth A, Llavata-Peris C, Bayer M, Kientz M, Rios A F, Borst J W, Lukowitz W, Jurgens G, Weijers D. Different auxin response machineries control distinct cell fates in the early plant embryo. Dev Cell, 2012, 22: 211-222.
doi: 10.1016/j.devcel.2011.10.026 pmid: 22264733 |
[55] | Chen C M, Twito S, Miller G. New cross talk between ROS, ABA and auxin controlling seed maturation and germination unraveled in APX6 deficient Arabidopsis seeds. Plant Signal Behav, 2014, 9: 12. |
[56] |
Takase T, Nakazawa M, Ishikawa A, Manabe K, Matsui M. DFL2, a new member of the Arabidopsis GH3 gene family, is involved in red light-specific hypocotyl elongation. Plant Cell Physiol, 2003, 44: 1071-1080.
doi: 10.1093/pcp/pcg130 |
[57] |
Kan C C, Zhang Y, Wang H L, Shen Y B, Xia X L, Guo H W, Li Z H. Transcription factor NAC075 delays leaf senescence by deterring reactive oxygen species accumulation in Arabidopsis. Front Plant Sci, 2021, 12: 691607.
doi: 10.3389/fpls.2021.691607 |
[58] | Jia F J, Wan X M, Zhu W, Sun D, Zheng C C, Liu P, Huang J G. Overexpression of mitochondrial phosphate transporter 3 severely hampers plant development through regulating mitochondrial function in Arabidopsis. PLoS One, 2015, 10: e0129717. |
[59] |
Arrivault S, Senger T, Kramer U. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J, 2006, 46: 861-879.
doi: 10.1111/j.1365-313X.2006.02746.x |
[60] |
Li J M, Zhang M H, Sun J, Mao X, Wang J G, Liu H L, Zheng H L, Li X W, Zhao H W, Zou D T. Heavy metal stress-associated proteins in rice and Arabidopsis: genome-wide identification, phylogenetics, duplication, and expression profiles analysis. Front Genet, 2020, 11: 477.
doi: 10.3389/fgene.2020.00477 |
[61] |
Hirohashi T, Nakai M. Molecular cloning and characterization of maize Toc34, a regulatory component of the protein import machinery of chloroplast. Biochim Biophys Acta, 2000, 1491: 309-314.
pmid: 10760596 |
[62] |
Lee S H, Li C W, Koh K W, Chuang H Y, Chen Y R, Lin C S, Chan M T. MSRB7 reverses oxidation of GSTF2/3 to confer tolerance of Arabidopsis thaliana to oxidative stress. J Exp Bot, 2014, 65: 5049-5062.
doi: 10.1093/jxb/eru270 |
[63] | Liu J, Last R L. A chloroplast thylakoid lumen protein is required for proper photosynthetic acclimation of plants under fluctuating light environments. Proc Natl Acad Sci USA, 2017, 114: E8110-E8117. |
[64] |
Kress E, Jahns P. The dynamics of energy dissipation and xanthophyll conversion in Arabidopsis indicate an indirect photoprotective role of zeaxanthin in slowly inducible and relaxing components of non-photochemical quenching of excitation energy. Front Plant Sci, 2017, 8: 2094.
doi: 10.3389/fpls.2017.02094 |
[65] |
Angeles-Nunez J G, Tiessen A. Regulation of AtSUS2 and AtSUS3 by glucose and the transcription factor LEC2 in different tissues and at different stages of Arabidopsis seed development. Plant Mol Biol, 2012, 78: 377-392.
doi: 10.1007/s11103-011-9871-0 pmid: 22228409 |
[66] | 王方琳, 柴成武, 赵鹏, 唐卫东, 付贵全, 孙涛, 胥宝一. 3种荒漠植物光合及叶绿素荧光对干旱胁迫的响应及抗旱性评价. 西北植物学报, 2021, 41: 1755-1765. |
Wang F L, Chai C W, Zhao P, Tang W D, Fu G Q, Sun T, Xu B Y. Photosynthetic and chlorophyll fluorescence responses of three desert species to drought stress and evaluation of drought resistance. Acta Bot Boreali-Occident Sin, 2021, 41: 1755-1765 (in Chinese with English abstract) | |
[67] | 杨丹青, 何晓丽, 李佳, 厉书豪, 杜志杰, 张昆, 钟凤林. 外源镍与氮素互作对番茄幼苗生长及光合特性的影响. 江苏农业学报, 2021, 37: 936-943. |
Yang D Q, He X L, Li J, Li S H, Du Z J, Zhang K, Zhong F L. Effects of interaction between exogenous nickel and nitrogen on growth and photosynthetic characteristics of tomato seedlings. Jiangsu Agric Sci, 2021, 37: 936-943 (in Chinese with English abstract) | |
[68] | Li J H, Cang Z M, Jiao F, Bai X J, Zhang D, Zha R C. Influence of drought stress on photosynthetic characteristics and protective enzymes of potato at seedling stage. J Saud Soc Agric Sci, 2017, 16: 82-88. |
[69] | 兰进好, 李新海, 高树仁, 张宝石, 张世煌. 不同生态环境下玉米产量性状QTL分析. 作物学报, 2005, 31: 1253-1259. |
Lan J H, Li X H, Gao S R, Zhang B S, Zhang S H. QTL analysis of yield components in maize under different environments. Acta Agron Sin, 2005, 31: 1253-1259 (in Chinese with English abstract) | |
[70] | 万何平. 甘蓝型油菜苗期耐盐相关性状的全基因组关联分析. 华中农业大学博士学位论文, 湖北武汉, 2017. |
Wan H P. Genome-Wide Association Study of Salt Tolerance-related Traits at the Seedling Stage in Rapeseed (Brassica napus L.). PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2017. (in Chinese with English abstract) | |
[71] |
蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析. 作物学报, 2021, 47: 462-471.
doi: 10.3724/SP.J.1006.2021.04034 |
Meng J Y, Liang G W, He Y J, Qian W. QTL mapping of salt and drought tolerance related traits in Brassica napus L. Acta Agron Sin, 2021, 47: 462-471. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04034 |
|
[72] |
Doll J, Muth M, Riester L, Nebel S, Bresson J, Lee H C, Zentgraf U. Arabidopsis thaliana WRKY25 transcription factor mediates oxidative stress tolerance and regulates senescence in a redox- dependent manner. Front Plant Sci, 2020, 10: 1734.
doi: 10.3389/fpls.2019.01734 |
[73] | 贺亚军, 吴道明, 游婧璨, 钱伟. 油菜耐盐相关性状的全基因组关联分析及其候选基因预测. 中国农业科学, 2017, 50: 1189-1201. |
He Y J, Wu D M, You J C, Qian W. Genome-wide association analysis of salt tolerance related traits in Brassica napus. Sci Agric Sin, 2017, 50: 1189-1201. (in Chinese with English abstract) | |
[74] |
Rahaman M, Mamidi S Rahman M. Genome-wide association study of heat stress tolerance traits in spring-type Brassica napus L. under controlled conditions. Crop J, 2018, 6: 115-125.
doi: 10.1016/j.cj.2017.08.003 |
[75] |
Awasthi J P, Saha B, Panigrahi J, Yanase E, Koyama H, Panda S K. Redox balance, metabolic fingerprint and physiological characterization in contrasting northeast Indian rice for aluminum stress tolerance. Sci Rep, 2019, 9: 8681.
doi: 10.1038/s41598-019-45158-3 |
[76] | 赵雄伟. 铅胁迫下玉米不同组织铅含量的QTL定位与候选基因挖掘. 四川农业大学硕士学位论文, 四川成都, 2014. |
Zhao X W. QTL Mapping and Candidate Genes Identification for Pb2+ Content in Different Maize Organs under Lead Stress. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2014. (in Chinese with English abstract) | |
[77] |
Wang J, Wang D Y, Zhu M, Li F H. Exogenous salicylic acid ameliorates waterlogging stress damages and improves photosynthetic efficiency and antioxidative defense system in waxy corn. Photosynthetica, 2021, 59: 84-94.
doi: 10.32615/ps.2021.005 |
[78] |
Khu D M, Reyno R, Han Y H, Zhao P X, Bouton J H, Brummer E C, Monteros M J. Identification of aluminum tolerance quantitative trait loci in tetraploid alfalfa. Crop Sci, 2013, 53: 148-163.
doi: 10.2135/cropsci2012.03.0181 |
[79] |
Buapeta P, Low W J Q, Todd P A. Differing photosynthetic responses to excess irradiance in the two coexisting seagrasses, Halophila ovalis and Halophila decipiens: chloroplast avoidance movement, chlorophyll fluorescence, and leaf optical properties. Aquat Bot, 2020, 166: 103268.
doi: 10.1016/j.aquabot.2020.103268 |
[80] |
Jiang D X, Hou J J, Gao W W, Tong X, Li M, Chu X, Chen G X. Exogenous spermidine alleviates the adverse effects of aluminum toxicity on photosystem II through improved antioxidant system and endogenous polyamine contents. Ecotox Environ Safe, 2021, 207: 111265.
doi: 10.1016/j.ecoenv.2020.111265 |
[81] | Zhang F, Zhu K, Wang Y Q, Zhang Z P, Lu F, Yu H Q, Zou J Q. Changes in photosynthetic and chlorophyll fluorescence characteristics of sorghum under drought and waterlogging stress. Photosyntheica, 2019, 57: 1156-1164. |
[82] | 肖飞. 棉花花铃期叶片PSII和PSI光抑制及对低温的响应. 石河子大学硕士学位论文, 新疆石河子, 2017. |
Xiao F. The PSII and PSI Photoinhibition in the Response of Cotton at Boll Stage to Low Temperature. MS Thesis of Shihezi University, Shihezi, Xinjiang, China, 2017. (in Chinese with English abstract) | |
[83] | 宋奇娉, 封鹏雯, 刘洋, 杨兴洪. PSII组装与修复循环机制研究进展. 植物生理学报, 2019, 55: 133-140. |
Song Q P, Feng P W, Liu Y, Yang X H. The research progress of the mechanism on PSII assemble and repair circulation. Plant Physiol J, 2019, 55: 133-140 (in Chinese with English abstract). | |
[84] |
Chen H, Zhang D, Guo J, Wu H, Jin M F, Lu Q T, Lu C M, Zhang L X. A Psb27 homologue in Arabidopsis thaliana is required for efficient repair of photodamaged photosystem I. Plant Mol Biol, 2006, 61: 567-575.
pmid: 16897475 |
[1] | 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195. |
[2] | 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220. |
[3] | 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264. |
[4] | 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995. |
[5] | 张胜忠, 胡晓辉, 慈敦伟, 杨伟强, 王菲菲, 邱俊兰, 张天雨, 钟文, 于豪諒, 孙冬平, 邵战功, 苗华荣, 陈静. 基于三维模型重构的花生网纹厚度性状QTL分析[J]. 作物学报, 2022, 48(8): 1894-1904. |
[6] | 李胜婷, 徐远芳, 常玮, 刘亚俊, 谷嫄, 朱红, 李加纳, 卢坤. Bna.C02SWEET15通过光周期途径正向调控油菜开花时间[J]. 作物学报, 2022, 48(8): 1938-1947. |
[7] | 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证[J]. 作物学报, 2022, 48(7): 1635-1644. |
[8] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[9] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[10] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[11] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[12] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[13] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[14] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[15] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
|