作物学报 ›› 2014, Vol. 40 ›› Issue (11): 1973-1979.doi: 10.3724/SP.J.1006.2014.01973
王小丽1,2,杜建中1,郝曜山1,张丽君1,赵欣梅1,2,王亦学1,孙毅1,2,*
WANG Xiao-Li1,2,DU Jian-Zhong1,HAO Yao-Shan1,ZHANG Li-Jun1,ZHAO Xin-Mei1,2,WANG Yi-Xue1,SUN Yi1,2,*
摘要:
采用超声波辅助花粉介导植物转基因方法, 将甜菜碱醛脱氢酶(BADH)基因导入玉米自交系郑58, 获得了耐盐性强的转基因玉米植株。经卡那霉素抗性初筛、PCR扩增、Southern blot杂交分析, 证明BADH基因已导入转化植株并整合到其基因组中。用不同浓度的NaCl溶液对T2代转基因玉米植株与对照进行盐胁迫处理, 结果表明, 转BADH基因玉米植株表现出一定的抗逆性, 生长状况明显优于对照; 根据非转化苗对NaCl的反应以及生长状况, 确定250 mmol L-1 NaCl溶液为玉米幼苗耐盐性筛选的适宜浓度; 依据此临界浓度下形态指标和生理生化指标的测定结果, 与对照相比, 转基因植株的株高提高10.94%~25.7%, 鲜重增加8.62%~18.2%, 干重增加9%~18.18%, 相对电导率降低37.21%~58.14%, 叶绿素含量增加15.89%~90.65%, 超氧化物歧化酶(SOD)活性提高64.92%~148.29%, 丙二醛(MDA)含量减少26.97%~48.05%。综上所述, 转入甜菜碱醛脱氢酶(BADH)基因提高了玉米的耐盐性。这是首例将BADH基因导入优良玉米自交系郑58的报道。超声波辅助花粉介导法是一种经济、高效、实用和无基因型依赖性的植物基因转化方法。
[1]Agarwal S, Pandey V. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol Plant, 2004, 48: 555–560 [2]王彩娟, 李志强, 王晓琳, 姜闯道, 唐宇丹, 谷卫彬, 石雷. 室外盆栽条件下盐胁迫对甜高粱光系统II活性的影响. 作物学报, 2011, 37: 2085−2093Wang C J, Li Z Q, Wang X L, Jiang C D, Tang Y D, Gu W B, Shi L. Effects of salt stress on photosystem II activity in sweet sorghum seedlings grown in pots outdoors. Acta Agron Sin, 2011, 37: 2085−2093 (in Chinese with English abstract)[3]Agami R A. Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. South Afr J Bot, 2013, 88: 171–177[4]Khodarahmpour Z, Ifar M, Motamedi M. Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. Afr J Biotechnol, 2012, 11: 298-304[5]Bao Y X, Zhao R, Li F F, Tang W, Han L B. Simultaneous expression of Spinacia oleracea chloroplast choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH) genes contribute to dwarfism in transgenic Lolium perenne. Plant Mol Biol Rep, 2011, 29: 379–388[6]Zhou S F, Chen X Y, Zhang X G, Li Y X. Improved salt tolerance in tobacco plants by co-transformation of a betaine synthesis gene BADH and a vacuolar Na+/H+ antiporter gene SeNHX1. Biotechnol Lett, 2008, 30: 369–376[7]Jia G X, Zhu Z Q, Chang F Q, Li Y X. Transformation of tomato with the BADH from Atriplex improves salt tolerance. Plant Cell Rep, 2002, 21: 141–146[8]Zhang Y, Yin H, Li D, Zhu W W, Li Q L. Functional analysis of BADH gene promoter from Suaeda liaotungensis K. Plant Cell Rep, 2008, 27: 585–592[9]Rathinasabapathi B, McCue K F, Gage D A, Hanson A D. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta, 1994, 193: 155–162[10]张艳敏, 张红梅, 相金英, 郭秀林, 刘子会, 李国良, 陈受宜. 转BADH基因苜蓿T-DNA侧翼序列分析及转化事件特异性分析. 作物学报, 2011, 37: 397–404 Zhang Y M, Zhang H M, Xiang J Y, Guo X L, Liu Z H, Li G L, Chen S Y. Analysis of T-DNA flanking sequences and event-specific detection of transgenic alfalfa with gene BADH. Acta Agron Sin, 2011, 37: 397-404 (in Chinese with English abstract)[11]郭北海, 张艳敏, 李洪杰, 杜立群, 李银心, 张劲松, 陈受宜, 朱至清. 甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达. 植物学报, 2000, 42: 279−283Guo B H, Zhang Y M, Li H J, Du L Q, Li Y X, Zhang J S, Chen S Y, Zhu Z Q. Transformation of wheat with a gene encoding for the betaine aldehyde dehydrogenase (BADH). Acta Bot Sin, 2000, 42: 279−283 (in Chinese with English abstract)[12]Liu Z H, Zhang H M, Li G L, Guo X L, Chen S Y, Liu G B, Zhang Y M. Enhancement of salt tolerance in alfalfa transformed with the gene encoding for betaine aldehyde dehydrogenase. Euphytica, 2011, 178: 363–372[13]韩德俊, 陈耀锋, 李春莲, 郭东伟, 李振岐. 转甜菜碱醛脱氢酶基因油菜的获得及其耐盐性研究. 干旱地区农业研究, 2007, 25(4): 6−11 Han D J, Chen Y F, Li C L, Guo D W, Li Z Q. Agrobacterium-mediated transformation with a gene encoding for betaine-aldehyde dehydrogenase (BADH) in Brassica napus. Agric Res Arid Areas, 2007, 25(4): 6−11 (in Chinese with English abstract)[14]张宁, 司怀军, 栗亮, 杨涛, 张春凤, 王蒂. 转甜菜碱醛脱氢酶基因马铃薯的抗旱耐盐性. 作物学报, 2009, 35: 1146−1150 Zhang N, Si H J, Li L, Yang T, Zhang C F, Wang D. Drought and salinity tolerance in transgenic potato expressing the betaine aldehyde dehydrogenase gene. Acta Agron Sin, 2009, 35: 1146−1150 (in Chinese with English abstract)[15]罗晓丽, 肖娟丽, 王志安, 张安红, 田颖川, 吴家和. 菠菜甜菜碱醛脱氢酶基因在棉花中的过量表达和抗冻耐逆性分析. 生物工程学报, 2008, 24: 1464–1469Luo X L, Xiao J L, Wang Z A, Zhang A H, Tian Y C, Wu J H. Overexpression of Spinacia oleracea betaine aldehyde dehydrogenase (SoBADH) gene confers the salt and cold tolerant in Gossypium hirsutum L. Chin J Biotech, 2008, 24: 1464–1469(in Chinese with English abstract) [16]Wang J X, Sun Y, Cui G M, Hu J J. Transgenic maize plants obtained by pollen-mediated transformation. Acta Bot Sin, 2001, 43: 275–279 (in English with Chinese abstract)[17]付光明, 苏乔, 吴畏, 赵洪梅, 安利佳. 转BADH基因玉米的获得及其耐盐性. 辽宁师范大学学报(自然科学版), 2006, 29: 344–347Fu G M, Su Q, Wu W, Zhao H M, An J L. Transconduct BADH gene into maize and the salt tolerance of transgenic maize. J Liaoning Norm Univ (Nat Sci Edn), 2006, 29: 344–347 (in Chinese with English abstract)[18]任小燕, 杜建中, 孙毅. 转AhCMO基因玉米后代的获得及耐盐性鉴定. 分子植物育种, 2013, 11: 332–338Ren X Y, Du J Z, Sun Y. Recovery and salt-tolerance evaluation of maize transgenic progeny with AhCMO gene. Mol Plant Breed, 2013, 11: 332–338 (in Chinese with English abstract)[19]Ashraf M, Ali Q. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ Exp Bot, 2008, 63: 266–273[20]Santos C V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sun?ower leaves. Sci Hortic, 2004, 103: 93–99[21]Meloni D A, Oliva M A, Martinez C A, Cambraia J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot, 2003, 49: 69–76[22]王彦玲, 卫文星, 铁双贵, 王延召, 朱卫红, 岳润清, 齐建双. 郑58和掖478玉米自交系基因组差异性分析. 玉米科学, 2010, 18(3): 57–60Wang Y L, Wei W X, Tie S G, Wang Y Z, Zhu W H, Yue R Q, Qi J S. Analysis of genomes difference between Zheng 58 and Ye 478. Maize Sci, 2010, 18(3): 57–60[23]李会勇, 王利锋, 唐保军, 程泽强, 王振华, 铁双贵. 玉米单交种郑单958遗传结构及杂种优势初步研究. 玉米科学, 2009, 17(1): 28–31Li H Y, Wang L F, Tang B J, Cheng Z Q, Wang Z H, Tie S G. Research on the genetic structure and heterosis of Zhengdan 958. Maize Sci, 2009, 17(1): 28–31[24]杜建中, 孙毅, 王景雪, 郝曜山, 程林梅. 转基因玉米中目的基因的遗传表达及其抗病性研究. 西北植物学报, 2007, 27: 1720–1727 Du J Z, Sun Y, Wang J X, Hao Y S, Cheng L M. Stable inheritance and expression of chitinase gene in the transgenic maize plants and their head smut-resistant activity. Acta Bot Boreali-Occident Sin, 2007, 27: 1720–1727 (in Chinese with English abstract)[25]杜建中, 孙毅, 王景雪, 郝曜山, 王亦学, 张丽君. 转水稻NibT基因玉米植株的获得及抗病性研究. 西北植物学报, 2011, 31: 861–867Du J Z, Sun Y, Wang J X, Hao Y S, Wang Y X, Zhang L J. Transgenic maize plants with rice NibT gene and their MDMV-resistance. Acta Bot Boreali-Occident Sin, 2011, 31: 861–867 (in Chinese with English abstract) |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[8] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[9] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[10] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[11] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[12] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[13] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[14] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[15] | 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379. |
|