欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (11): 1973-1979.doi: 10.3724/SP.J.1006.2014.01973

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

BADH基因玉米植株的获得及其耐盐性分析

王小丽1,2,杜建中1,郝曜山1,张丽君1,赵欣梅1,2,王亦学1,孙毅1,2,*   

  1. 1山西省农业科学院生物技术研究中心 / 农业部黄土高原作物基因资源与种质创制重点实验室, 山西太原 030031; 2 山西大学生物工程学院, 山西太原 030006
  • 收稿日期:2013-10-14 修回日期:2014-07-16 出版日期:2014-11-12 网络出版日期:2014-07-25
  • 通讯作者: 孙毅, E-mail: sunyi692003@163.com
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2009ZX08003-017B, 2013ZX08003-001), 国家自然科学基金项目(31240081), 山西省科技攻关项目(20110311009)和山西省农业科学院科技攻关项目(2013gg21)资助。

Transformation of BADH Gene into Maize and Salt Tolerence of Transgenic Plant

WANG Xiao-Li1,2,DU Jian-Zhong1,HAO Yao-Shan1,ZHANG Li-Jun1,ZHAO Xin-Mei1,2,WANG Yi-Xue1,SUN Yi1,2,*   

  1. 1 Biotechnology Research Center, Shanxi Academy of Agricultural Sciences / Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; 2 Biological Engineering Institute, Shanxi University, Taiyuan 030006, China
  • Received:2013-10-14 Revised:2014-07-16 Published:2014-11-12 Published online:2014-07-25
  • Contact: 孙毅, E-mail: sunyi692003@163.com

摘要:

采用超声波辅助花粉介导植物转基因方法, 将甜菜碱醛脱氢酶(BADH)基因导入玉米自交系郑58, 获得了耐盐性强的转基因玉米植株。经卡那霉素抗性初筛、PCR扩增、Southern blot杂交分析, 证明BADH基因已导入转化植株并整合到其基因组中。用不同浓度的NaCl溶液对T2代转基因玉米植株与对照进行盐胁迫处理, 结果表明, BADH基因玉米植株表现出一定的抗逆性, 生长状况明显优于对照; 根据非转化苗对NaCl的反应以及生长状况, 确定250 mmol L-1 NaCl溶液为玉米幼苗耐盐性筛选的适宜浓度; 依据此临界浓度下形态指标和生理生化指标的测定结果, 与对照相比, 转基因植株的株高提高10.94%~25.7%, 鲜重增加8.62%~18.2%, 干重增加9%~18.18%, 相对电导率降低37.21%~58.14%, 叶绿素含量增加15.89%~90.65%, 超氧化物歧化酶(SOD)活性提高64.92%~148.29%, 丙二醛(MDA)含量减少26.97%~48.05%综上所述, 转入甜菜碱醛脱氢酶(BADH)基因提高了玉米的耐盐性。这是首例将BADH基因导入优良玉米自交系58的报道。超声波辅助花粉介导法是一种经济、高效、实用和无基因型依赖性的植物基因转化方法。

关键词: 玉米, BADH基因, 转基因, 耐盐性, 形态指标, 生理指标

Abstract:

In order to obtain transgenic maize plants tolerant to salt stress, maize inbred Zheng 58 was transformed with BADH gene by pollen-mediated method. The results of Km-resistant screening, PCR detection and Southern blot analysis proved that BADH gene was introduced into maize plants and integrated into the maize genome. Effects of various concentrations of NaCl solution on growth of T2 transgenic and non-transgenic maize plants were investigatedThe results indicated that transgenic maize seedlings had an improved resistance to salt, and their growth performance was superior to that of non-transgenic maize seedlings. On the basis of the growth status of non-transgenic plants, 250 mmol L-1 of NaCl solution was used to screen transgenic plants. An analysis on morphological and physiological indexes under the stress of 250 mmol L-1 NaCl showed that compared with non-transgenic plants, the seedling height of transgenic plants was increased by 10.94%–25.7%, fresh weight was increased by 8.62%18.2%, dry weight was increased by 9%18.18%, relative conductivity was decreased by 37.21%58.14%, chlorophyll content was increased by 15.89%90.65%, superoxide dismutase (SOD) activity was increased by 64.92%148.29%, and MDA content was decreased by 26.97%48.05%. In conclusion, introducing betaine aldehyde dehydrogenase (BADH) gene enhances salt tolerance in maize plants. The first report on introducing BADH gene into the elite maize inbred proved that pollen-mediated transformation approach is an economical, effective and practical plant transformation method without genotype dependence.

Key words: Maize, BADH gene, Genetic transformation, Salt tolerance, Morphological index, Physiology index

[1]Agarwal S, Pandey V. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol Plant, 2004, 48: 555–560



[2]王彩娟, 李志强, 王晓琳, 姜闯道, 唐宇丹, 谷卫彬, 石雷. 室外盆栽条件下盐胁迫对甜高粱光系统II活性的影响. 作物学报, 2011, 37: 2085−2093



Wang C J, Li Z Q, Wang X L, Jiang C D, Tang Y D, Gu W B, Shi L. Effects of salt stress on photosystem II activity in sweet sorghum seedlings grown in pots outdoors. Acta Agron Sin, 2011, 37: 2085−2093 (in Chinese with English abstract)



[3]Agami R A. Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. South Afr J Bot, 2013, 88: 171–177



[4]Khodarahmpour Z, Ifar M, Motamedi M. Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. Afr J Biotechnol, 2012, 11: 298-304



[5]Bao Y X, Zhao R, Li F F, Tang W, Han L B. Simultaneous expression of Spinacia oleracea chloroplast choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH) genes contribute to dwarfism in transgenic Lolium perenne. Plant Mol Biol Rep, 2011, 29: 379–388



[6]Zhou S F, Chen X Y, Zhang X G, Li Y X. Improved salt tolerance in tobacco plants by co-transformation of a betaine synthesis gene BADH and a vacuolar Na+/H+ antiporter gene SeNHX1. Biotechnol Lett, 2008, 30: 369–376



[7]Jia G X, Zhu Z Q, Chang F Q, Li Y X. Transformation of tomato with the BADH from Atriplex improves salt tolerance. Plant Cell Rep, 2002, 21: 141–146



[8]Zhang Y, Yin H, Li D, Zhu W W, Li Q L. Functional analysis of BADH gene promoter from Suaeda liaotungensis K. Plant Cell Rep, 2008, 27:  585–592



[9]Rathinasabapathi B, McCue K F, Gage D A, Hanson A D. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta, 1994, 193: 155–162



[10]张艳敏, 张红梅, 相金英, 郭秀林, 刘子会, 李国良, 陈受宜. 转BADH基因苜蓿T-DNA侧翼序列分析及转化事件特异性分析. 作物学报, 2011, 37: 397–404



Zhang Y M, Zhang H M, Xiang J Y, Guo X L, Liu Z H, Li G L, Chen S Y. Analysis of T-DNA flanking sequences and event-specific detection of transgenic alfalfa with gene BADH. Acta Agron Sin, 2011, 37: 397-404 (in Chinese with English abstract)



[11]郭北海, 张艳敏, 李洪杰, 杜立群, 李银心, 张劲松, 陈受宜, 朱至清. 甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达. 植物学报, 2000, 42: 279−283



Guo B H, Zhang Y M, Li H J, Du L Q, Li Y X, Zhang J S, Chen S Y, Zhu Z Q. Transformation of wheat with a gene encoding for the betaine aldehyde dehydrogenase (BADH). Acta Bot Sin, 2000, 42: 279−283 (in Chinese with English abstract)



[12]Liu Z H, Zhang H M, Li G L, Guo X L, Chen S Y, Liu G B, Zhang Y M. Enhancement of salt tolerance in alfalfa transformed with the gene encoding for betaine aldehyde dehydrogenase. Euphytica, 2011, 178: 363–372



[13]韩德俊, 陈耀锋, 李春莲, 郭东伟, 李振岐. 转甜菜碱醛脱氢酶基因油菜的获得及其耐盐性研究. 干旱地区农业研究, 2007, 25(4): 6−11



Han D J, Chen Y F, Li C L, Guo D W, Li Z Q. Agrobacterium-mediated transformation with a gene encoding for betaine-aldehyde dehydrogenase (BADH) in Brassica napus. Agric Res Arid Areas, 2007, 25(4): 6−11 (in Chinese with English abstract)



[14]张宁, 司怀军, 栗亮, 杨涛, 张春凤, 王蒂. 转甜菜碱醛脱氢酶基因马铃薯的抗旱耐盐性. 作物学报, 2009, 35: 1146−1150



Zhang N, Si H J, Li L, Yang T, Zhang C F, Wang D. Drought and salinity tolerance in transgenic potato expressing the betaine aldehyde dehydrogenase gene. Acta Agron Sin, 2009, 35: 1146−1150 (in Chinese with English abstract)



[15]罗晓丽, 肖娟丽, 王志安, 张安红, 田颖川, 吴家和. 菠菜甜菜碱醛脱氢酶基因在棉花中的过量表达和抗冻耐逆性分析. 生物工程学报, 2008, 24: 1464–1469



Luo X L, Xiao J L, Wang Z A, Zhang A H, Tian Y C, Wu J H. Overexpression of Spinacia oleracea betaine aldehyde dehydrogenase (SoBADH) gene confers the salt and cold tolerant in Gossypium hirsutum L. Chin J Biotech, 2008, 24: 1464–1469(in Chinese with English abstract)



[16]Wang J X, Sun Y, Cui G M, Hu J J. Transgenic maize plants obtained by pollen-mediated transformation. Acta Bot Sin, 2001, 43: 275–279 (in English with Chinese abstract)



[17]付光明, 苏乔, 吴畏, 赵洪梅, 安利佳. 转BADH基因玉米的获得及其耐盐性. 辽宁师范大学学报(自然科学版), 2006, 29: 344–347



Fu G M, Su Q, Wu W, Zhao H M, An J L. Transconduct BADH gene into maize and the salt tolerance of transgenic maize. J Liaoning Norm Univ (Nat Sci Edn), 2006, 29: 344–347 (in Chinese with English abstract)



[18]任小燕, 杜建中, 孙毅. 转AhCMO基因玉米后代的获得及耐盐性鉴定. 分子植物育种, 2013, 11: 332–338



Ren X Y, Du J Z, Sun Y. Recovery and salt-tolerance evaluation of maize transgenic progeny with AhCMO gene. Mol Plant Breed, 2013, 11: 332–338 (in Chinese with English abstract)



[19]Ashraf M, Ali Q. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ Exp Bot, 2008, 63: 266–273



[20]Santos C V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sun?ower leaves. Sci Hortic, 2004, 103: 93–99



[21]Meloni D A, Oliva M A, Martinez C A, Cambraia J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot, 2003, 49: 69–76



[22]王彦玲, 卫文星, 铁双贵, 王延召, 朱卫红, 岳润清, 齐建双. 郑58和掖478玉米自交系基因组差异性分析. 玉米科学, 2010, 18(3): 57–60



Wang Y L, Wei W X, Tie S G, Wang Y Z, Zhu W H, Yue R Q, Qi J S. Analysis of genomes difference between Zheng 58 and Ye 478. Maize Sci, 2010, 18(3): 57–60



[23]李会勇, 王利锋, 唐保军, 程泽强, 王振华, 铁双贵. 玉米单交种郑单958遗传结构及杂种优势初步研究. 玉米科学, 2009, 17(1): 28–31



Li H Y, Wang L F, Tang B J, Cheng Z Q, Wang Z H, Tie S G. Research on the genetic structure and heterosis of Zhengdan 958. Maize Sci, 2009, 17(1): 28–31



[24]杜建中, 孙毅, 王景雪, 郝曜山, 程林梅. 转基因玉米中目的基因的遗传表达及其抗病性研究. 西北植物学报, 2007, 27: 1720–1727



Du J Z, Sun Y, Wang J X, Hao Y S, Cheng L M. Stable inheritance and expression of chitinase gene in the transgenic maize plants and their head smut-resistant activity. Acta Bot Boreali-Occident Sin, 2007, 27: 1720–1727 (in Chinese with English abstract)



[25]杜建中, 孙毅, 王景雪, 郝曜山, 王亦学, 张丽君. 转水稻NibT基因玉米植株的获得及抗病性研究. 西北植物学报, 2011, 31: 861–867



Du J Z, Sun Y, Wang J X, Hao Y S, Wang Y X, Zhang L J. Transgenic maize plants with rice NibT gene and their MDMV-resistance. Acta Bot Boreali-Occident Sin, 2011, 31: 861–867 (in Chinese with English abstract)

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[13] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!