欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (2): 267-279.doi: 10.3724/SP.J.1006.2022.14047

• 综述 •    下一篇

谷子近缘野生种的亲缘关系及其利用研究

赵美丞1,2(), 刁现民2,*()   

  1. 1中国科学院遗传与发育生物学研究所农业资源研究中心/河北省节水农业重点实验室, 河北石家庄 050021
    2中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2021-02-02 接受日期:2021-05-17 出版日期:2022-02-12 网络出版日期:2021-05-24
  • 通讯作者: 刁现民
  • 作者简介:E-mail: mczhao@sjziam.ac.cn
  • 基金资助:
    本研究由国家重点研发计划项目(2019YFD1000700);本研究由国家重点研发计划项目(2019YFD1000701);本研究由国家重点研发计划项目(2018YFD1000706);本研究由国家重点研发计划项目(2018YFD1000700);国家现代农业产业技术体系建设专项(CARS-06-13.5-A4);国家自然科学基金项目(31871634);河北省自然科学基金项目资助(C2020503004)

Phylogeny of wild Setaria species and their utilization in foxtail millet breeding

ZHAO Mei-Cheng1,2(), DIAO Xian-Min2,*()   

  1. 1Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Hebei Province Key Laboratory for Water-Saving Agriculture, Shijiazhuang 050021, Heibei, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2021-02-02 Accepted:2021-05-17 Published:2022-02-12 Published online:2021-05-24
  • Contact: DIAO Xian-Min
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2019YFD1000700);This study was supported by the National Key Research and Development Program of China(2019YFD1000701);This study was supported by the National Key Research and Development Program of China(2018YFD1000706);This study was supported by the National Key Research and Development Program of China(2018YFD1000700);the China Agricultural Research System(CARS-06-13.5-A4);the National Natural Science Foundation of China(31871634);the Natural Science Foundation of Hebei Province(C2020503004)

摘要:

谷子在约1万年前由青狗尾草驯化而来, 我国是谷子的起源中心。谷子所属的狗尾草属在全世界约有125个种, 其中中国有15个种, 从二倍体到八倍体均有。目前利用染色体原位杂交技术鉴定出狗尾草属6个基因组, 利用分子标记分析发现狗尾草属是多起源的, 与其多样性的基因组一致。系统演化分析发现, 青狗尾草和谷子亲缘关系最近, 其次是法式狗尾草和轮生狗尾草; 基因组比较分析发现, S. adhaerans的B基因组和S. grisebachii的C基因组与谷子和青狗尾草的A基因具有相对近的亲缘关系, 而其他基因组和谷子亲缘较远。在野生资源的利用方面, 谷子育种工作者已成功将近缘野生种自然发生的抗除草剂基因转育到谷子中, 培育成功了可化学除草的新品种并在生产上利用。本文对谷子野生种的分类、基因组构成、系统进化关系和遗传育种的研究进展进行了综述, 重点讨论了谷子近缘野生种在谷子起源与驯化、遗传育种中起到的作用, 并对谷子近缘野生种在谷子驯化及育种中的进一步利用做了展望。

关键词: 谷子, 近缘野生种, 系统进化分析, 遗传育种

Abstract:

Foxtail millet (Setaria italica) was domesticated from the wild ancestor, green foxtail (S. viridis), about ten thousand years ago in China. Foxtail millet belongs to Setaria genus, which includes about 125 species of panicoid grasses worldwide, and 15 species of them in China varied from diploid to octoploid. Currently, six genomes in the Setaria genus have been identified by GISH (genomic in situ hybridization). Molecular phylogenetic analyses show that the Setaria genus is polyphyletic, in line with the characteristic of diversified genomes. Phylogeny of Setaria genus reveal that foxtail millet is most closely related with green foxtail, and then S. fabrei and S. verticillata, and that A genome of S. italica/S. viridis appears to be closer to B genome of S. adhaeran and C genome of S. grisebachii than the other known genomes. For utilization of wild species resources, foxtail millet breeders have successfully introduced the naturally mutated herbicide-resistant genes from green foxtail into cultivars, resulting in the herbicide-resistant foxtail millet variety. Here, we review the recent advances of wild species of foxtail millet in species classification, genome constitution and phylogenetic relationships, and highlight the utility of the wild species resources for breeding and domestication of foxtail millet. We also discuss the potentials of the wild Setaria species in discovery of domestication genes and breeding in foxtail millet in the future.

Key words: foxtail millet, wild species, phylogenetic analysis, breeding

表1

狗尾草属物种的分布与染色体倍性(修改自Kellogg[19])"

物种名称
Species name
起源地
Origin
染色体数目
Chromosome number (2n)
S. adhaerens 亚洲 Asia 18
S. apiculata 澳大利亚 Australia 36
S. barbata 非洲 Africa 54, 56
S. faberi 南美洲 South America 36
S. flavida 澳大利亚 Australia 44, 54
S. geminata 非洲 Africa ND
S. grisebachii 北美洲和南美洲 North and South America 18
S. homonyma 非洲 Africa ND
S. italica 亚洲 Asia 18, 36
S. kagerensis 非洲 Africa 18
S. lachnea 南美洲 South America 36
S. leucopila 美国, 墨西哥, 南美洲 USA, Mexico, and South America 54, 68, 72
S. longiseta 非洲 Africa 36
S. macrostachya 北美洲和南美洲 North and South America 54, 72
S. magna 北美洲和南美洲 North and South America 36
S. nigrirostris 非洲 Africa 18, 36, 54
S. oblongata 阿根廷和玻利维亚 Argentina and Bolivia ND
S. palmifolia 亚洲和非洲 Asia and Africa 54, 36
S. pampeana 阿根廷 Argentina 50
S. pflanzii 南美洲 South America 36
S. plicata 亚洲 Asia ND
S. pumila 非洲和亚洲 Africa and Asia 36, 54
S. restioidea 非洲 Africa ND
S. rosengurtii 南美洲 South America ND
S. scabrifolia 南美洲 South America ND
S. sphacelata 非洲 Africa 18, 36, 54
S. sulcata 北美洲和南美洲 North and South America 18, 32, 36
S. tenacissima 北美洲和南美洲 North and South America 54, 36
S. vaginata 南美洲 South America 18
S. verticillata 欧亚大陆 Eurasia 36, 54
S. viridis 亚洲 Asia 18
S. vulpiseta 北美洲和南美洲 North and South America 36, 54

表2

狗尾草已知的基因组构成"

种名
Species name
起源地
Origin
搜集号
Accession number
染色体倍数
Chromosome number
基因组构成
Genome constitutions
S. viridis 中国河北 Hebei, China N033 2n = 2x = 18 AA
S. viridis 俄罗斯 Russia 09005 2n = 2x = 18 AA
青9 Qing 9 中国河北 Hebei, China N011 2n = 2x = 18 BB
S. adhaerans 西班牙 Spain 02448 2n = 2x = 18 BB
S. adhaerans 美国夏威夷 Hawaii, USA 25001 2n = 2x = 18 BB
S. grisebachii 墨西哥 Mexico 03001 2n = 2x = 18 CC
S. queenslandica 澳大利亚 Australia PI316342 2n = 4x = 36 AAAA
S. lachnea 澳大利亚 Australia 11001 2n = 4x = 36 CCC’C’
S. verticillata 法国 France 08006 2n = 4x = 36 AABB
S. faberi 俄罗斯 Russia 02005 2n = 4x = 36 AABB
S. glauca 美国 USA 04004 2n = 4x = 36 X (DD)
S. glauca 日本 Japan 04002 2n = 8x = 72 X (DD)
S. plicata 中国昆明 Kunming, China 25001 2n = 4x = 36 X (EE)
S. palmifolia 中国昆明 Kunming, China 26001 2n = 6x = 54 X (EE)
S. arenaria 中国昆明 Kunming, China 27001 2n = 6x = 54 X (FF)

图1

基于knotted1和5S rDNA基因构建的狗尾草属系统进化树 种名后字母代表不同的拷贝, 6个不同的基因组(A~F)被区分开来。"

表3

已鉴定的自然突变抗除草剂狗尾草"

狗尾草种类
Species
发现年份
Year of the first identification
发现地点
Country
种植作物环境
Situation
抗除草剂种类
Active ingredients
除草剂作用位点
Site of action
S. viridis 1988 加拿大(曼尼托巴)
Canada (Manitoba)
大麦 Barley
小麦 Wheat
乙丁烯氟灵 Ethalfluralin
氟乐灵 Trifluralin
微管抑制剂
Microtubule assembly inhibitors
S. viridis 1991 加拿大(曼尼托巴)
Canada (Manitoba)
大麦 Barley
小麦 Wheat
禾草灵 Diclofop-methyl
拿扑净 Sethoxydim
肟草酮 Tralkoxydim
乙酰辅酶羧化酶抑制剂
Acetyl CoA carboxylase
S. viridis 1992 加拿大(曼尼托巴)
Canada (Manitoba)
大麦 Barley
油菜 Canola
禾草灵 Diclofop-methyl
拿扑净 Sethoxydim
肟草酮 Tralkoxydim
氟乐灵 Trifluralin
微管和乙酰辅酶羧化酶抑制剂
Microtubule assembly and acetyl CoA carboxylase inhibitor
S. viridis 2001 加拿大(安大略省)
Canada (Ontario)
玉米 Maize
大豆 Soybean
氟酮磺隆 Flucarbazone
咪唑乙烟酸 Imazethapyr
烟嘧磺隆 Nicosulfuron
嘧草硫醚 Pyrithiobac
乙酰乳酸合成酶抑制剂
Acetolactate synthase inhibitor
S. viridis 1982 法国 France 玉米 Maize 阿特拉津 Atrazine 光合作用光系统II抑制剂
Photosystem II inhibitor
S. viridis 1987 西班牙 Spain 玉米 Maize 阿特拉津 Atrazine 光合作用光系统II抑制剂
Photosystem II inhibitor
S. viridis 1989 美国(北达科他州)
USA (North Dakota)
向日葵 Sunflower
小麦 Wheat
氟乐灵 Trifluralin 微管抑制剂
Microtubule assembly inhibitors
S. viridis 1999 美国(威斯康星州)
USA (Wisconsin)
玉米 Maize
大豆 Soybean
甲氧咪草烟 Imazamox 乙酰乳酸合成酶抑制剂
Acetolactate synthase inhibitor
S. verticillata 1992 西班牙 Spain 玉米 Maize 阿特拉津 Atrazine 光合作用光系统II抑制剂
Photosystem II inhibitor
S. faberi 2003 加拿大(安大略省)
Canada (Ontario)
大豆 Soybean 咪唑乙烟酸 Imazethapyr 乙酰乳酸合成酶抑制剂
Acetolactate synthase inhibitor
S. faberi 1987 西班牙 Spain 玉米 Maize 阿特拉津 Atrazine 光合作用光系统II抑制剂
Photosystem II inhibitor
S. faberi 1984 美国(马里兰州)
USA (Maryland)
玉米 Maize 阿特拉津 Atrazine 光合作用光系统II抑制剂
Photosystem II inhibitor
S. faberi 1991 美国(威斯康星州)
USA (Wisconsin)
胡萝卜 Carrot
玉米 Maize
洋葱 Onion
氟禾草灵 Fluazifop-butyl
拿扑净 Sethoxydim
乙酰辅酶羧化酶抑制剂
Acetyl CoA carboxylase
S. faberi 1999 美国(威斯康星州)
USA (Wisconsin)
玉米 Maize
大豆 Soybean
咪唑乙烟酸 Imazethapyr
烟嘧磺隆 Nicosulfuron
乙酰乳酸合成酶抑制剂
Acetolactate synthase inhibitor
S. glauca 1997 美国(明尼苏达州)
USA (Minnesota)
大豆 Soybean 咪唑乙烟酸 Imazethapyr 乙酰乳酸合成酶抑制剂
Acetolactate synthase inhibitor
S. glauca 1981 法国 France 玉米 Maize 阿特拉津 Atrazine 光合作用光系统II抑制剂
Photosystem II inhibitor
[1] Diao X M, Jia G Q. Origin and domestication of foxtail millet. In: Doust A, Diao X, eds. Genetics and Genomics of Setaria. Berlin: Springer, 2017. pp 61-72.
[2] 刁现民. 禾谷类杂粮作物耐逆和栽培技术研究新进展. 中国农业科学, 2019,52:3943-3949.
Diao X M. Progresses in stress tolerance and field cultivation studies of orphan cereals in China. Sci Agric Sin, 2019,52:3943-3949 (in Chinese with English abstract).
[3] Diao X M, Schnable J, Bennetzen J L, Li J Y. Initiation of Setaria as a model plant. Front Agric Sci Eng, 2014,1:16-20.
[4] Brutnell T P, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X G, Kellogg E, Eck J V. Setaria viridis: a model for C4 photosynthesis. Plant Cell, 2010,22:2537-2544.
[5] Diao X M, Jia G Q. Foxtail millet germplasm and inheritance of morphological characteristics. In: Doust A, Diao X, eds. Genetics and Genomics of Setaria. Berlin: Springer, 2017. pp 73-92.
[6] Li C H, Pao W K, Li H W. Interspecific crosses in Setaria: II. Cytological studies of interspecific hybrids involving: 1, S. faberii and S. italica, and 2, a three way cross, F2 of S. italica × S. viridis and S. faberii. J Heredity, 1942,33:351-355.
[7] 高俊华, 毛丽萍, 王润奇. 谷子四体的细胞学和形态学研究. 作物学报, 2000,26:801-805.
Gao J H, Mao L P, Wang R Q. A study on the cytology and morphology of the tetrasomics in foxtail millet. Acta Agron Sin, 2000,26:801-805 (in Chinese with English abstract).
[8] Wang Y Q, Zhi H, Li W, Li H Q, Wang Y F, Huang Z J, Diao X M. A novel genome of C and the first autotetraploid species in the Setaria genus identified by genomic in situ hybridization. Genet Resour Crop Evol, 2009,56:843-850.
[9] Zhao M C, Zhi H, Doust A N, Li W, Wang Y F, Li H Q, Jia G Q, Wang Y Q, Zhang N, Diao X M. Novel genomes and genome constitutions identified by GISH and 5S rDNA and knotted1 genomic sequences in the genus Setaria. BMC Genomics, 2013,14:244.
[10] Benabdelmouna A, Shi Y, Abirached-Darmency M, Darmency H. Genomic in situ hybridization (GISH) discriminates between the A and the B genomes in diploid and tetraploid Setaria species. Genome, 2001,44:685-690.
[11] Benabdelmouna A, Abirached-Darmency M, Darmency H. Phylogenetic and genomic relationships in Setaria italica and its close relatives based on the molecular diversity and chromosomal organization of 5S and 18S-5.8S-25S rDNA genes. Theor Appl Genet, 2001,103:668-677.
[12] Hubbard F T. A taxonomic study of Setaria and its immediate allies. Am J Bot, 1915,2:169-198.
[13] Dekker J. The evolutionary biology of the foxtail (Setaria) species-group. In: Inderjit, ed. Weed Biology and Management. Dordrecht: Kluwer Academic, 2004. pp 65-113.
[14] Rominger J M. Taxonomy of Setaria(Gramineae) in North America. Bull Torrey Bot Club, 1962,29:1-132.
[15] Pensiero J F. Las especies sudamericanas del género Setaria(Poaceae, Paniceae). Darwiniana, 1999,37:37-151 (in Spanish with English abstract).
[16] Morrone O, Aliscioni S A, Veldkamp J F, Pensiero J, Zuloaga F O, Kellogg E A. A revision of the old world species of Setaria. Syst Bot Monographs, 2014,96:1-160.
[17] Kellogg E A, Aliscioni S S, Morrone O, Pensiero J, Zuloaga F. A phylogeny of Setaria(Poaceae, Panicoideae, Paniceae) and related genera, based on the chloroplast gene ndhF. Int J Plant Sci, 2009,170:117-131.
[18] 郑殿升. 中国粮食作物的野生近缘植物及其保存概况. 中国野生植物资源, 2006,25(5):5-7.
Zheng D S. General situation of wild relatives of food crop and their conservation in China. Chin Wild Plant Resour, 2006,25(5):5-7 (in Chinese with English abstract).
[19] Kellogg E A. Evolution of Setaria. In: Doust A, Diao X, eds. Genetics and Genomics of Setaria. Berlin: Springer, 2017. pp 3-27.
[20] Dekker J. The foxtail (Setaria) species-group. Weed Sci, 2003,51:641-656.
[21] Doust A N, Penly A M, Jacobs S W L, Kellogg E A. Congruence, conflict, and polyploidization shown by nuclear and chloroplast markers in the monophyletic “bristle clade” (Paniceae, Panicoideae, Poaceae). Syst Bot, 2007,32:531-544.
[22] Jia G Q, Shi S K, Wang C F, Niu Z G, Chai Y, Zhi H, Diao X M. Molecular diversity and population structure of Chinese green foxtail [Setaria viridis(L.) Beauv.] revealed by microsatellite analysis. J Exp Bot, 2013,64:3645-3656.
[23] 王永强, 智慧, 李伟, 李海权, 王永芳, 刁现民. 狗尾草属野生近缘种的染色体鉴定. 植物遗传资源学报, 2007,8:159-164.
Wang Y Q, Zhi H, Li W, Li H Q, Wang Y F, Diao X M. Chromosome number identification of some wild Setaria species. J Plant Genet Resour, 2007,8:159-164 (in Chinese with English abstract).
[24] Kim S, Kim C S, Lee J, Lee I Y, Chung Y J, Cho M S, Kim S C. Phylogenetic relationships among species of Setaria(Paniceae; Panicoideae; Poaceae) in Korea: insights from nuclear, 2015,301:725-736.
[25] Layton D J, Kellogg E A. Morphological, phylogenetic, and ecological diversity of the new model species Setaria viridis(Poaceae: Paniceae) and its close relatives. Am J Bot, 2014,101:539-557.
[26] 吴权明, 白君礼. 谷子与轮生狗尾草(2x、4x)种间的亲缘关系分析. 西北植物学报, 2000,20:954-959.
Wu Q M, Bai J L. Cytogenetic and isoenzymic studies on Setaria millet and S. verticillata(2x) and S. verticiformis, 2000,20:954-959 (in Chinese with English abstract).
[27] 黎裕, 王雅儒. 谷子及其近缘种的蛋白质变异. 作物品种资源, 1998, (2):3-5.
Li Y, Wang Y R. Protein variation analysis of foxtail millet and related wild species. China Seed Ind, 1998, (2):3-5 (in Chinese with English abstract).
[28] 吴权明, 陈雪婷, 朱静林. 谷子及其近缘野生种酯酶同工酶分析(I). 西北农业学报, 2000,9(3):106-109.
Wu Q M, Chen X T, Zhu J L. A isozyme study on foxtail millet and some related species (I). Acta Agric Boreali-Occident Sin, 2000,9(3):106-109 (in Chinese with English abstract).
[29] 吴权明. 谷子及其近缘野生种酯酶同工酶分析(II). 西北农业学报, 2001,10(2):39-44.
Wu Q M. A isozyme study on foxtail millet and some related species (II). Acta Agric Boreali-Occident Sin, 2001,10(2):39-44 (in Chinese with English abstract).
[30] 阎洪波, 黎裕, 王天宇, 石云素, 宋燕春, 马峙英, 周世良. 中国谷子主产区谷子近缘种狗尾草的遗传多样性. 西北植物学报, 2003,23:926-932.
Yan H B, Li Y, Wang T Y, Shi Y S, Song Y C, Ma Z Y, Zhou S L. Genetic diversity of wild relatives of foxtail millet distributed in the major foxtail millet production regions of China. Acta Bot Boreali-Occident Sin, 2003,23:926-932 (in Chinese with English abstract).
[31] Jusuf M, Pernes J. Genetic variability of foxtail millet (Setaria italica P. Beauv.). Theor Appl Genet, 1985,71:385-391.
[32] Le Thierry d’Ennequin M, Panaud O, Toupance B, Sarr A. Assessment of genetic relationships between Setaria italica and its wild relative S. viridis using AFLP markers. Theor Appl Genet, 2000,100:1061-1066.
[33] Li Y, Jia J, Wang Y, Wu S. Intraspecific and interspecific variation in Setaria revealed by RAPD analysis. Genet Resour Crop Evol, 1998,45:279-285.
[34] Li W, Zhi H, Wang Y F, Li H Q, Diao X M. Assessment of genetic relationship of foxtail millet with its wild ancestor and close relatives by ISSR markers. J Integr Agric, 2012,11:556-566.
[35] Hirano R, Naito K, Fukunaga K, Watanabe K N, Ohsawa R, Kawase M. Genetic structure of landraces in foxtail millet (Setaria italica(L.) P. Beauv.) revealed with transposon display and interpretation to crop evolution of foxtail millet. Genome, 2011,54:498-506.
[36] Jia G Q, Huang X H, Zhi H, Zhao Y, Zhao Q, Li W J, Chai Y, Yang L F, Liu K Y, Lu H Y, Zhu C R, Lu Y Q, Zhou C C, Fan D L, Weng Q J, Guo Y L, Huang T, Zhang L, Lu T T, Feng Q, Hao, H F, Liu H K, Lu P, Zhang N, Li Y H, Guo E H, Wang S J, Wang S Y, Liu J R, Zhang W F, Chen G Q, Zhang B J, Li W, Wang Y F, Li H Q, Zhao B H, Li J Y, Diao X M, Han B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet, 2013,45:957-961.
[37] Mamidi S, Healey A, Huang P, Grimwood J, Jenkins J, Barry K, Sreedasyam A, Shu S, Lovell J T, Feldman M, Wu J, Yu Y, Chen C, Johnson J, Sakakibara H, Kiba T, Sakurai T, Tavares R, Nusinow D A, Baxter I, Schmutz J, Brutnell T P, Kellogg E A. A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci. Nat Biotechnol, 2020,38:1203-1210.
[38] Doust A N, Devos K M, Gadberry M D, Gale M D, Kellogg E A. Genetic control of branching in foxtail millet. Proc Natl Acad Sci USA, 2004,101:9045-9050.
[39] Yu Y, Hu H, Doust A N, Kellogg E A. Divergent gene expression networks underlie morphological diversity of abscission zones in grasses. New Phytol, 2002,225:1799-1815.
[40] 智慧, 王永强, 李伟, 王永芳, 李海权, 陆平, 刁现民. 利用野生青狗尾草的细胞质培育谷子质核互作雄性不育材料. 植物遗传资源学报, 2007,8:261-264.
Zhi H, Wang Y Q, Li W, Wang Y F, Li H Q, Lu P, Dian X M. Development of CMS material from intra-species hybridization between green foxtail and foxtail millet. J Plant Genet Resour, 2007,8:261-264 (in Chinese with English abstract).
[41] 朱光琴, 李续中, 师公贤, 李亚文. 谷子不育系同源四倍体秋水仙碱引变试验. 陕西农业科学, 1987, ( 6):33.
Zhu G Q, Li J Z, Shi G X, Li Y W. Development of autotetraploid sterile line in foxtail millet by colchicine induction. Shaanxi J Agric Sci, 1987, ( 6):33 (in Chinese with English abstract).
[42] 朱光琴, 吴权明, 马云彤. 谷子Ve型不育系的选育. 陕西农业科学, 1991, (1):7.
Zhu G Q, Wu Q M, Ma Y T. Development of Ve type of sterile line in foxtail millet. Shaanxi J Agric Sci, 1991, ( 1):7 (in Chinese with English abstract).
[43] Darmency H, Pernes J. Use of wild Setaria viridis(L.) Beauv. to improve triazine resistance in cultivated S. italica, 2006,25:175-179.
[44] 李志江. 谷子抗除草剂基因的发现及其应用. 基因组学与应用生物学, 2010,29:768-774.
Li Z J. Discovery and application of herbicide resistant gene in foxtail millet. Genomics Appl Biol, 2010,29:768-774 (in Chinese with English abstract).
[45] Zhao H J, Wang J H, Gao P, Gu R L, Zhang J Q, Wang T Y. Cloning of plastid AcetylCoA carboxylase cDNA from Setaria italica and sequence analysis of graminicide target site. Acta Bot Sin, 2004,46:751-756.
[46] Darmency H, Picard J C, Wang T. Fitness costs linked to dinitroaniline resistance mutation in Setaria. Heredity, 2011,107:80-86.
[47] 王天宇, 石云素, 辛志勇, Darmency H. 抗除草剂谷子新种质的创制、鉴定与利用. 中国农业科技导报, 2000, ( 5):62-66.
Wang T Y, Shi Y S, Xin Z Y, Darmency H. Development and utilization of herbicide-resistant foxtail millet variety. J Agric Sci Technol, 2000, ( 5):62-66 (in Chinese with English abstract).
[48] Tian J G, Wang C L, Xia J L, Wu L S, Xu G H, Wu W H, Li D, Qin W C, Han X, Chen Q Y, Jin W W, Tian F. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science, 2019,365:658-664.
[1] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[2] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[3] 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846.
[4] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[5] 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062.
[6] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
[7] 翟胜男, 郭军, 刘成, 李豪圣, 宋健民, 刘爱峰, 曹新有, 程敦公, 李法计, 何中虎, 夏先春, 刘建军. 小麦类胡萝卜素合成途径关键基因Lcye功能分析[J]. 作物学报, 2020, 46(10): 1485-1495.
[8] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604.
[9] 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127.
[10] 苑乂川, 陈小雨, 李明明, 李萍, 贾亚涛, 韩渊怀, 邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应[J]. 作物学报, 2019, 45(4): 601-612.
[11] 陈雪娇,张旭东,韩治中,张鹏,贾志宽,连延浩,韩清芳. 半干旱区沟垄集雨种植谷子的肥料效应及其增产贡献[J]. 作物学报, 2018, 44(7): 1055-1066.
[12] 陈倩楠,王轲,汤沙,杜丽璞,智慧,贾冠清,赵宝华,叶兴国,刁现民. 以抗除草剂Bar基因稳定转化谷子技术研究[J]. 作物学报, 2018, 44(10): 1423-1432.
[13] 赵庆英, 张瑞娟, 王瑞良, 高建华, 韩渊怀, 杨致荣, 王兴春. 基于名优谷子品种晋谷21全基因组重测序的分子标记开发[J]. 作物学报, 2018, 44(05): 686-696.
[14] 高亮,张维宏*,杜雄,郭江,宋晋辉,王晓明,赵治海. 覆膜和补灌对杂交谷子产量形成与水分利用效率的影响[J]. 作物学报, 2017, 43(01): 122-132.
[15] 黄锁,胡利芹,徐东北,李微微,徐兆师,李连城,周永斌,刁现民,贾冠清,马有志,陈明. 谷子转录因子SiNF-YA5通过ABA非依赖途径提高转基因拟南芥耐盐性[J]. 作物学报, 2016, 42(12): 1787-1797.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!